
COMP50001: Algorithm Design & Analysis
Sheet 7 (Week 8)

Exercise 7.1

There is an algorithm related to quick sort called quick select: given
an unsorted array, it returns the kth smallest element, in O(n) time.

The following is a slow, but correct,
implementation of selection.

slowselect :: Ord a⇒ Int→ [a ]→ Maybe a
slowselect i xs
| i < length xs = Just (sort xs !! i)
| otherwise = Nothing

swap :: STArray s Int a→ Int→ Int→ ST s ()
swap axs i j = do

x← readArray axs i
y← readArray axs j
writeArray axs i y
writeArray axs j x

apartition :: Ord a
⇒ STArray s Int a
→ Int
→ Int
→ ST s Int

apartition axs p q = do
x← readArray axs p
let loop i j
| i > j = do swap axs p j

return j
| otherwise = do u← readArray axs i

if u < x
then do loop (i + 1) j
else do swap axs i j

loop i (j− 1)
loop (p + 1) q

Just as with quick sort the algorithm partitions the input accord-
ing to a pivot. Unlike quick sort, the algorithm does not recurse on
both partitions: given that the kth element is to be found, if the re-
turned pivot index is bigger than k, only the left partition is needed;
otherwise, if it is smaller only the right partition is needed; other-
wise they are equal and the pivot is the element required.

Implement qselect :: Ord a ⇒ Int → [a ] → Maybe a, a persistent
version of quick select that works directly on lists. Also implement
qselect′ with the same signature, but that makes use of aqselect ::
Ord a ⇒ Int → STArray s Int a → Int → Int → ST s (Maybe a) to
perform an in-place quick select, and comment on the performance
difference between the two implementations.

Exercise 7.2

runSTArray :: (∀s.ST s (STArray s i a))→ Array i a
thaw :: Ix i⇒ Array i a→ ST s (STArray s i a)

Often it is useful to give efficient but mutation-heavy algorithms
a pure interface. Using the functions runSTArray and thaw, imple-
ment a pure interface to the qsort presented in lectures:

qsortp :: Ord a⇒ Array Int a→ Array Int a

Explain if it is possible to implement a similar pure interface to
the functions index :: Int → Array Int a → a and update :: a → Int →
Array Int a→ Array Int a which maintains their O(1) running time.

Exercise 7.3
fromList :: Eq a⇒ [ [a ] ]→ Trie a
fromList = foldr insert (False ≺ [ ])Consider the following type which represents sets of strings of as:

data Trie a = Bool ≺ [ (a, Trie a) ] fromList ["pi", "pin", "pit" ] =
False ≺
[ (’p’, False ≺
[ (’i’, True ≺
[ (’n’, True ≺ [ ])
, (’t’, True ≺ [ ]) ]) ]) ]

⃝ ’p’ ⃝ ’i’  
’n’  

’t’  

fromList ["pin", "pit" ] =
False ≺
[ (’p’, False ≺
[ (’i’, False ≺
[ (’n’, True ≺ [ ])
, (’t’, True ≺ [ ]) ]) ]) ]

⃝ ’p’ ⃝ ’i’ ⃝
’n’  

’t’  

1. Calculate the time complexity of member, in terms of both the
size of the trie and the length of the input list:

member :: Eq a⇒ [a ]→ Trie a→ Bool
member [ ] (e ≺ ) = e
member (x : xs) ( ≺ ys) = maybe False (member xs) (lookup x ys)

2. If a is a finite type like Word4, the time complexity of member
changes. Calculate its time complexity when a ≡ Word4.

3. Implement insert :: Eq a⇒ [a ]→ Trie a→ Trie a.

4. Assume you have a perfect hashing function on a, called hashList ::
Hashable a ⇒ a → [Bool ]. Implement nubT :: Hashable a ⇒ [a ] →
[a ] using this hash function and the trie. Word4 is the type of 4-bit words, i.e.

unsigned integers ranging in value
from 0 to 15.
A perfect hashing function is one that
maps elements without any collisions.
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5. Consider another hashing function which returns the bits of the
hash in four-bit chunks: hashChunks :: Hashable a ⇒ a → [Word4 ].
Calculate the time complexity of insert ◦ hashChunks in terms of
the cardinality of a.

6. Calculate the time complexity when hashChunks returns n-bit
chunks.

Exercise 7.4
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graph :: Graph Int
graph 1 = [2, 3 ]
graph 2 = [4, 5, 9 ]
graph 3 = [6, 7 ]
graph 4 = [ ]
graph 5 = [8, 9 ]
graph 6 = [10 ]
graph 7 = [1 ]
graph 8 = [6 ]
graph 9 = [3 ]
graph 10 = [ ]

A valid result for dfs graph 3 is
[3, 6, 10, 7, 1, 2, 4, 5, 8, 9 ].

Consider the following representation of graphs:

type Graph a = a→ [a ]

Implement the following two versions of depth-first-search, where
dfs g r returns a list of all the nodes in the graph g visited in depth-
first-search order starting from a root r.

dfs :: Ord a⇒ Graph a→ a→ [a ]
dfs′ :: Hashable a⇒ Graph a→ a→ [a ]

dfs should have complexity O(n log n), and dfs′ should be O(n).
You may use data structures implemented in other assignments to
implement this solution.

Exercise 7.5

Given a uniformly-distributed hash function and n buckets, calcu-
late the chance of a collision happening after inserting m elements.

Exercise 7.6

A bloom filter is a probabilistic data structure which can act as a set,
with some small probability of false positives in the set. It works by
storing a bit array; to insert a value into the set, take multiple hash
functions, run each of them on the value, and set the corresponding
bits in the bit array.

Implement nubB :: [a → Int ] → [a ] → [a ] which uses a bloom
filter of size 256. The first argument is the list of hash functions that
should be used.

Exercise 7.7

Cuckoo hashing is an efficient way to handle hash collisions in a
hash table. It works by storing two hash tables, with two different
hash functions. When inserting, if an element already is in the
bucket being inserted into, it is kicked out and inserted into the
other hash table. This procedure repeats until an empty bucket is
found or the whole hash table has been traversed, at which point
two new tables (double the size) are allocated.

data HashSet s a = ...

newHashSet :: ST s (HashSet s a)

insert :: Hashable a⇒ a→ HashSet s a→ ST s ()
member :: Hashable a⇒ a→ HashSet s a→ ST s BoolImplement a set as a mutable hash table with insert and member

functions using cuckoo hashing.


