
COMP50001: Algorithm Design & Analysis
Sheet 7 (Week 8)

Exercise 7.1

There is an algorithm related to quick sort called quick select: given
an unsorted array, it returns the kth smallest element, in O(n) time.

The following is a slow, but correct,
implementation of selection.

slowselect :: Ord a⇒ Int→ [a]→ Maybe a
slowselect i xs
| i < length xs = Just (sort xs !! i)
| otherwise = Nothing

swap :: STArray s Int a→ Int→ Int→ ST s ()
swap axs i j = do

x← readArray axs i
y← readArray axs j
writeArray axs i y
writeArray axs j x

apartition :: Ord a
⇒ STArray s Int a
→ Int
→ Int
→ ST s Int

apartition axs p q = do
x← readArray axs p
let loop i j
| i > j = do swap axs p j

return j
| otherwise = do u← readArray axs i

if u < x
then do loop (i + 1) j
else do swap axs i j

loop i (j− 1)
loop (p + 1) q

Just as with quick sort the algorithm partitions the input accord-
ing to a pivot. Unlike quick sort, the algorithm does not recurse on
both partitions: given that the kth element is to be found, if the re-
turned pivot index is bigger than k, only the left partition is needed;
otherwise, if it is smaller only the right partition is needed; other-
wise they are equal and the pivot is the element required.

Implement qselect :: Ord a ⇒ Int → [a] → Maybe a, a persistent
version of quick select that works directly on lists. Also implement
qselect′ with the same signature, but that makes use of aqselect ::
Ord a ⇒ Int → STArray s Int a → Int → Int → ST s (Maybe a) to
perform an in-place quick select, and comment on the performance
difference between the two implementations.

Exercise 7.2

runSTArray :: (∀s.ST s (STArray s i a))→ Array i a
thaw :: Ix i⇒ Array i a→ ST s (STArray s i a)

Often it is useful to give efficient but mutation-heavy algorithms
a pure interface. Using the functions runSTArray and thaw, imple-
ment a pure interface to the qsort presented in lectures:

qsortp :: Ord a⇒ Array Int a→ Array Int a

Explain if it is possible to implement a similar pure interface to
the functions index :: Int → Array Int a → a and update :: a → Int →
Array Int a→ Array Int a which maintains their O(1) running time.

Exercise 7.3
fromList :: Eq a⇒ [[a]]→ Trie a
fromList = foldr insert (False ≺ [])Consider the following type which represents sets of strings of as:

data Trie a = Bool ≺ [(a, Trie a)] fromList ["pi", "pin", "pit"] =
False ≺
[(’p’, False ≺
[(’i’, True ≺
[(’n’, True ≺ [])
, (’t’, True ≺ [])])])]

⃝ ’p’ ⃝ ’i’
’n’

’t’

fromList ["pin", "pit"] =
False ≺
[(’p’, False ≺
[(’i’, False ≺
[(’n’, True ≺ [])
, (’t’, True ≺ [])])])]

⃝ ’p’ ⃝ ’i’ ⃝
’n’

’t’

1. Calculate the time complexity of member, in terms of both the
size of the trie and the length of the input list:

member :: Eq a⇒ [a]→ Trie a→ Bool
member [] (e ≺) = e
member (x : xs) (≺ ys) = maybe False (member xs) (lookup x ys)

2. If a is a finite type like Word4, the time complexity of member
changes. Calculate its time complexity when a ≡ Word4.

3. Implement insert :: Eq a⇒ [a]→ Trie a→ Trie a.

4. Assume you have a perfect hashing function on a, called hashList ::
Hashable a ⇒ a → [Bool]. Implement nubT :: Hashable a ⇒ [a] →
[a] using this hash function and the trie. Word4 is the type of 4-bit words, i.e.

unsigned integers ranging in value
from 0 to 15.
A perfect hashing function is one that
maps elements without any collisions.

comp50001: algorithm design & analysis 2

5. Consider another hashing function which returns the bits of the
hash in four-bit chunks: hashChunks :: Hashable a ⇒ a → [Word4].
Calculate the time complexity of insert ◦ hashChunks in terms of
the cardinality of a.

6. Calculate the time complexity when hashChunks returns n-bit
chunks.

Exercise 7.4

1

2

3

4

5

6

7

8

9

10

graph :: Graph Int
graph 1 = [2, 3]
graph 2 = [4, 5, 9]
graph 3 = [6, 7]
graph 4 = []
graph 5 = [8, 9]
graph 6 = [10]
graph 7 = [1]
graph 8 = [6]
graph 9 = [3]
graph 10 = []

A valid result for dfs graph 3 is
[3, 6, 10, 7, 1, 2, 4, 5, 8, 9].

Consider the following representation of graphs:

type Graph a = a→ [a]

Implement the following two versions of depth-first-search, where
dfs g r returns a list of all the nodes in the graph g visited in depth-
first-search order starting from a root r.

dfs :: Ord a⇒ Graph a→ a→ [a]
dfs′ :: Hashable a⇒ Graph a→ a→ [a]

dfs should have complexity O(n log n), and dfs′ should be O(n).
You may use data structures implemented in other assignments to
implement this solution.

Exercise 7.5

Given a uniformly-distributed hash function and n buckets, calcu-
late the chance of a collision happening after inserting m elements.

Exercise 7.6

A bloom filter is a probabilistic data structure which can act as a set,
with some small probability of false positives in the set. It works by
storing a bit array; to insert a value into the set, take multiple hash
functions, run each of them on the value, and set the corresponding
bits in the bit array.

Implement nubB :: [a → Int] → [a] → [a] which uses a bloom
filter of size 256. The first argument is the list of hash functions that
should be used.

Exercise 7.7

Cuckoo hashing is an efficient way to handle hash collisions in a
hash table. It works by storing two hash tables, with two different
hash functions. When inserting, if an element already is in the
bucket being inserted into, it is kicked out and inserted into the
other hash table. This procedure repeats until an empty bucket is
found or the whole hash table has been traversed, at which point
two new tables (double the size) are allocated.

data HashSet s a = ...

newHashSet :: ST s (HashSet s a)

insert :: Hashable a⇒ a→ HashSet s a→ ST s ()
member :: Hashable a⇒ a→ HashSet s a→ ST s BoolImplement a set as a mutable hash table with insert and member

functions using cuckoo hashing.

comp50001: algorithm design & analysis 3

Solutions to the Exercises

Solution 7.1

qselect :: Ord a⇒ Int→ [a]→ Maybe a
qselect k [] = Nothing
qselect k (x : xs)
| k < p = qselect k us
| k > p = qselect (k− p− 1) vs
| otherwise = Just x

where
(us, vs) = partition (⩽ x) xs
p = length us

qselect′ :: Ord a⇒ Int→ [a]→ Maybe a
qselect′ k xs = runST $ do

axs← newListArray (0, n) xs
mx ← aqselect k axs 0 n
return mx

where
n = length xs− 1

aqselect :: Ord a⇒ Int→ STArray s Int a→ Int→ Int→ ST s (Maybe a)
aqselect k axs i j

| i > j = return Nothing
| otherwise = do

p← apartition axs i j
if | k < p → aqselect k axs i (p− 1)
| k > p → aqselect k axs (p + 1) j
| otherwise→ do x← readArray axs p

return (Just x)

Solution 7.2

The idea is that thaw takes an immutable array and produces a mu-
table one in some context s. Then, the aqsort function from lectures
can perform an in-place quicksort on this new array. Once the work
is complete, the array is returned using runSTArray.

qsortp axs = runSTArray $ do
axsm← thaw axs
aqsort axsm i j
return axsm

where
(i, j) = bounds axs

aqsort :: Ord a⇒ STArray s Int a→ Int→ Int→ ST s ()
aqsort axs i j
| i ⩾ j = return ()

| otherwise = do
k← apartition axs i j

comp50001: algorithm design & analysis 4

aqsort axs i (k− 1)
aqsort axs (k + 1) j

The index function poses no problem, since the array is not mutated
in any way. In contrast, the update function will produce a copy of
the array, which cannot be done in O(1) time.

Solution 7.3

1. If a is finite and small enough then there are only finitely many
children in the tree. Storing these children in an array makes
the lookup at each node constant. In this case, the complexity of
member is O(n), where the word has length n.

2. The time complexity of the member function is bounded, in part,
by the branching factor (i.e. the number of children) of each
node. By limiting the keys to Word4, we have limited the number
of children in each node to 16, making the complexity of member
O(n× 16), i.e. O(n).

3. The insert function works by recursing over then input key that
is to be inserted into the tree.

In the base case the list is empty, which means that the tree must
be updated so that the current node is True

insert :: ∀a.Eq a⇒ [a]→ Trie a→ Trie a
insert [] (e ≺ ts) = True ≺ ts

The True signifies that the key is present at this node in the trie.

Otherwise, the key is some x : xs and is being inserted into some
node (e ≺ ts). The value of e remains unchanged: only the last
node on the path from the root of the trie taken by following the
key is affected: all other node values remain the same. The result
of ins ts is to find the child whose edge is labelled with x so that
the insertion can continue there.

insert (x : xs) (e ≺ ts) = e ≺ ins ts
where

ins :: [(a, Trie a)]→ [(a, Trie a)]
ins [] = [(x, insert xs (False ≺ []))]

ins ((y, yt) : ts)
| x ≡ y = (y, insert xs yt) : ts
| otherwise = (y, yt) : ins ts

The definition of ins inspects each of the children of the current
node. If there are no children, then a new edge is created with
the label x, and its child is the tree given by inserting xs into the
empty tree. Otherwise there is some edge (y, yt) to consider.
If x ≡ y then yt is the tree that corresponds to x. The label y
remains unchanged, since it is equal to x, and insert xs yt is
performed to update the rest of yt. The other siblings ts are left
unchanged. If x ̸≡ y then (y, yt) is left unchanged and ins contin-
ues to search in the siblings ts.

The perfect hashList can be simulated
as follows, although this implemen-
tation is beyond the scope of this
course.

getBits :: FiniteBits a⇒ a→ [Bool]
getBits x = map (testBit x) [0 . . finiteBitSize x− 1]

hashList :: Hashable a⇒ a→ [Bool]
hashList = getBits ◦ hash

comp50001: algorithm design & analysis 5

4. The idea here is to build a trie using insert and the hash func-
tion. Since each element in the list can be turned into a [Bool],
this list can be used as the keys in the trie.

Each element x in the list turns into a function that both looks
up x in a tree t by using its hashlist. If the element is not present,
then the trie is modified to contain that element.

nubT :: ∀a.Hashable a⇒ [a]→ [a]
nubT xs = foldr f b xs (False ≺ [])

where
b :: Trie Bool→ [a]
b = const []

f :: a→ (Trie Bool→ [a])→ (Trie Bool→ [a])
f x k t
| member hx t = k t
| otherwise = x : k (insert hx t)

where hx = hashList x

5. To calculate the worst-case complexity of insert, we consider
the case when the tree is at its maximum size (i.e. it has every
element of a in it), and every node has the maximum number of
children. In this case, inserting into the tree is bounded only by
the depth of the tree, which is on the order of O(log16|a|).

6. Using similar reasoning, the depth of the tree (and therefore the
complexity of insert), is of the order O(log2n+1 |a|).

Solution 7.4

The first version uses a Set impelmentation, since there is an Ord
constraint. Given a graph g and a root r, we perform search Set.empty [r],
where search repeatedly pops nodes off of the stack (its second ar-
gument), and searches from them if they’re not in the set of items it
has already seen.

If the element has not been visited yet, then it is added to the
output as the next node to be visited, and all of its children are
pushed onto the top of the stack.

dfsStack :: Ord a⇒ Graph a→ a→ [a]
dfsStack g r = search Set.empty [r]

where
search [] = []

search seen (x : stack)
| Set.member x seen = search seen stack
| otherwise = x : search (Set.insert x seen) (g x ++ stack)

Now there are n nodes to be searched, and assuming the set takes
O(log n) time to check for membership the overall cost is as re-
quired.

The recursion pattern over stack here is a familiar one, and is
actually encapsulated by foldr:

comp50001: algorithm design & analysis 6

dfs :: ∀a.Ord a⇒ Graph a→ a→ [a]
dfs g r = search r (const []) Set.empty

where
search :: a→ (Set a→ [a])→ (Set a→ [a])
search x k xs
| Set.member x xs = k xs
| otherwise = x : foldr search k (g x) (Set.insert x xs)

The expensive operation in the previous code is member. The idea
is to replace this with a hash table where values are inserted. The
insert and the lookup should be O(1).

dfs′ :: ∀a.(Hashable a, Eq a)⇒ Graph a→ a→ [a]
dfs′ g r = runST $ do

ht← HT.new
search ht r (pure [])

where
search :: HT.HashTable s a ()→ a→ ST s [a]→ ST s [a]
search ht x p = do isMember← memberHT x ht

if isMember
then p
else do HT.insert ht x ()

ys← foldr (search ht) p (g x)
return (x : ys)

The memberHT function checks for membership by doing a
lookup, and returning True or False accordingly.

memberHT :: (Hashable a, Eq a)⇒ a→ HT.HashTable s a b→ ST s Bool
memberHT x ht = do

mx← HT.lookup ht x
case mx of

Just → return True
Nothing→ return False

Solution 7.5

This is a restating of the well-known birthday problem.
It’s easier to understand if we first calculate the probability of

not finding a collision: for n buckets and 2 elements, that simply
means that the second element must not go into the same bucket as
the first, which has a probability of n−1

n . If we were to add a third
element, there would be one fewer bucket to choose from, meaning
the new probability is n−1

n ×
n−2

n . In general, we can calculate the
probability of not finding a collision with the following:

m−1

∏
i=1

n− i
n

(1)

comp50001: algorithm design & analysis 7

And then the probability of a collision is simply the inverse of that,
which is the following:

1−
m−1

∏
i=1

n− i
n

(2)
Or, in Haskell code:

collision n m = 1− product (map (%n) (take m [n, n− 1 . .]))

Solution 7.6

This solution will first build an array of the required size (this will
be our bit-array):

falses :: Int→ ST s (STArray s Int Bool)
falses n = newArray (0, n− 1) False

Next, we will write a function that returns all of the indices into the
bit array given the list of hash functions:

bloomIndices :: [a→ Int]→ a→ [Int]
bloomIndices xs x = map (λh→ h x ‘mod‘ 256) xs

Notice that we take the hash modulo the size of the array.
Next we will write a function which reads the presence of our

element from the STArray:

bloomMember :: STArray s Int Bool→ [Int]→ ST s Bool
bloomMember axs is = do

ps← sequence [readArray axs i | i← is]
return (and ps)

And we also need a function which inserts into the bloom filter:

bloomInsert :: STArray s Int Bool→ [Int]→ ST s ()
bloomInsert axs is = do

sequence [writeArray axs i True | i← is]
return ()

Finally, we can tie all of this together like so:

nubB :: [a→ Int]→ [a]→ [a]
nubB hashes xs = runST $ do

axs← falses 256
go axs xs
where

go axs [] = pure []
go axs (x : xs) = do

let is = bloomIndices hashes x
r← bloomMember axs is
if r

then go axs xs
else do

bloomInsert axs is
fmap (x:) (go axs xs)

comp50001: algorithm design & analysis 8

Solution 7.7

As hash functions, we’ll use the following two functions to demon-
strate the implementation (although it is important to note that
these would not be appropriate for a full implementation).

hash1, hash2 :: Hashable a⇒ a→ Int
hash1 = hash
hash2 = hashWithSalt 4

We then have our definition of the hash set. Since this is basically a
mutable object, the whole type will be held behind an STRef :

data HashSetS s a
= HashSet Int

(STArray s Int (Maybe a))
(STArray s Int (Maybe a))

type HashSet s a = STRef s (HashSetS s a)

The first field of the HashSet constructor holds the size of the hash
tables.

We can extract the elements in the two hash tables with the fol-
lowing function:

elems′ :: HashSet s a→ ST s [a]
elems′ hs = do

HashSet xs ys← readSTRef hs
exs← getElems xs
eys← getElems ys
return (catMaybes (exs ++ eys))

And we can create an empty hash table with the following:

make′ :: Int→ ST s (HashSet s a)
make′ n = do

axs← newArray (0, n− 1) Nothing
ays← newArray (0, n− 1) Nothing
newSTRef (HashSet n axs ays)

The bool function is a helper function
defined as so:

bool :: a→ a→ Bool→ a
bool x False = x
bool x True = x

With those tools in place, the insert function is not too difficult:

insert′ :: Hashable a⇒ a→ HashSet s a→ ST s ()
insert′ x hs = do

HashSet sz ← readSTRef hs
go False x (sz ∗ 2)
where

go x 0 = do
HashSet sz ← readSTRef hs
hs′ ← make′ (sz ∗ 2)
exs← elems′ hs
insert′ x hs′

sequence [insert′ e hs′ | e← exs]

comp50001: algorithm design & analysis 9

nhs← readSTRef hs′

writeSTRef hs nhs

go s x v = do
HashSet sz xs ys← readSTRef hs
let n = bool hash1 hash2 s x ‘mod‘ sz
let axs = bool xs ys s
xv← readArray axs n
writeArray axs n (Just x)
case xv of

Nothing→ return ()

Just y→ go (¬ s) y (v− 1)

The go helper function does the bulk of the work here. The first
parameter is a boolean, telling the function which of the two arrays
it’s currently focused on; the second parameter is the element ac-
tually being inserted, and the final parameter is a counter tracking
how often the go function has been called, so that we know when to
stop and reallocate two new arrays.

member′ :: (Hashable a, Eq a)⇒ a→ HashSet s a→ ST s Bool
member′ x hs = do

HashSet sz ← readSTRef hs
go False (hash1 x) sz
where

go h 0 = return False
go s h i = do

HashSet asz xs ys← readSTRef hs
let axs = bool xs ys s
x′ ← readArray axs (h ‘mod‘ asz)
case x′ of

Nothing→ return False
Just y
| x ≡ y→ return True
| otherwise→ go (¬ s) (bool hash2 hash1 s y) (i− 1)

