
COMP50001: Algorithm Design & Analysis
Sheet 6 (Week 7)

Exercise 6.1

Notice that the definition of montePi only generates random x and y
values between 0 and 1, thus only hitting points in one quadrant of
the square. Explain why this measure approximates π/4.

montePi :: Double
montePi = loop (mkStdGen 42) 0 0 where

loop seed m n
| n ≡ 100000 =

4 ∗ fromIntegral m / fromIntegral n
| otherwise = loop seed′′ m′ n′

where n′ = n + 1
m′ = if inside (x, y) then m + 1 else m
(x, seed′) = randomR (0, 1) seed
(y, seed′′) = randomR (0, 1) seed′

inside :: (Double, Double) → Bool
inside (x, y) = x ∗ x + y ∗ y ⩽ 1

Exercise 6.2

Devise a randomized Monte Carlo algorithm to find the value of√
2. It need not be efficient. Hint: Consider the ratio of values between

0 and 2 that are less than
√

2.

Exercise 6.3

insertBTree′ :: Ord a ⇒ a → RBTree a → RBTree a
insertBTree′ x (RBTree seed n t)

| p ≡ 0 = RBTree seed′ (n + 1)
(insertRoot x t)

| otherwise = RBTree seed′ (n + 1)
(insertBTree x t)

where
(p, seed′) = randomR (0, n) seed

The insertBTree′ function does not produce correct results when
the same element is inserted more than once, since it always incre-
ments the size of the tree even when no new elements are added.
Discuss how the implementation can be changed without affecting
asymptotic complexity.

Exercise 6.4

data Treap a = Empty | Node (Treap a) a Int (Treap a)

insert :: Ord a ⇒ a → Int → Treap a → Treap a
insert x p Empty = Node Empty x p Empty
insert x p (Node lt y q rt)

| x < y = lnode (insert x p lt) y q rt
| x ≡ y = Node lt y q rt
| x > y = rnode lt y q (insert x p rt)

lnode :: Treap a → a → Int → Treap a → Treap a
lnode Empty y q rt = Node Empty y q rt
lnode lt@(Node llt x p lrt) y q rt

| q ⩽ p = Node lt y q rt
| otherwise = Node llt x p (Node lrt y q rt)

rnode :: Treap a → a → Int → Treap a → Treap a
rnode lt x p Empty = Node lt x p Empty
rnode lt x p rt@(Node rlt y q rrt)

| p ⩽ q = Node lt x p rt
| otherwise = Node (Node lt x p rlt) y q rrt

Prove that for a set of integers, each paired with a priority

S = {(xi, pi) | 1 ⩽ i ⩽ n}

where xi, pi :: Int, if xi ̸= xj and pi ̸= pj for any i ̸= j, then there is a
unique t :: Treap Int such that t satisfies the invariant of treaps and
nodes t contains the same set of elements as S, where

nodes :: Treap a → [(a, Int)]
nodes Empty = []

nodes (Node lt x p rt) = (x, p) : nodes lt ++ nodes rt

Argue that as a consequence inserting the elements {(xi, pi)}
into a treap in different orders gives rise to the same treap, assum-
ing all elements and priorities are distinct.

Exercise 6.5

Given lt, rt :: Treap a such that x ⩽ y for any (x,) in nodes lt and
any (y,) in nodes rt, prove that merge lt rt satisfies the invariants of
treaps.

merge :: Treap a → Treap a → Treap a
merge Empty rt = rt
merge lt Empty = lt
merge lt@(Node llt x p lrt) rt@(Node rlt y q rrt)

| p < q = Node llt x p (merge lrt rt)
| otherwise = Node (merge lt rlt) y q rrtExercise 6.6

Implement a split :: Ord a ⇒ Treap a → a → (Treap a, Treap a) such
that split t x computes (lt, rt) where lt contains exactly

filter (λ(y,) → y < x) (nodes t)

comp50001: algorithm design & analysis 2

as nodes and rt contains exactly
merge is a right-inverse of split:

uncurry merge (split t x) = t

filter (λ(y,) → y ⩾ x) (nodes t)

It should run in O(depth t) time.
depth :: Treap a → Int
depth Empty = 0
depth (Node lt x p rt) = 1 + max (depth lt) (depth rt)

Exercise 6.7

Implement insertion and deletion for treaps using only merge and
split

insert′ :: Ord a ⇒ a → Int → Treap a → Treap a
delete′ :: Ord a ⇒ a → a → Treap a → Treap a

such that delete′ x y t removes all elements in interval [x, y) from t.
In this exercise, we allow duplicate elements in a treap.

Exercise 6.8

Unordered lists, i.e. the List type class, can be efficiently imple-
mented by a variant of treaps in which the indices of a list 0, . . . ,
length xs − 1 are used as the ordered keys (the x in Node lt x p rt) of
a treap and the list elements are stored as payloads in treap nodes.
Define

These following functions are useful in
this exercise:

length :: TList a → Int
length EmptyT = 0
length (NodeT s) = s

payload :: TList a → a
payload EmptyT = error "empty"
payload (NodeT x) = x

priority :: TList a → Int
priority EmptyT = error "empty"
priority (NodeT p) = p

data TList a = EmptyT | NodeT (TList a) Int a Int (TList a)

with invariants that any NodeT lt s x p rt satisfies

s = length lt + length rt + 1

and the heap invariant that p ⩽ priority lt and p ⩽ priority rt
whenever lt or rt is not empty. Note that the indices are not stored
in the nodes. The list represented by a TList a is

toList :: TList a → [a]
toList EmptyT = []

toList (NodeT lt x rt) = toList lt ++ [x] ++ toList rt

1. Implement single :: MonadRandom m ⇒ a → m (TList a) that
creates a singleton list from an element with a random priority
generated using the MonadRandom interface.

Same as treaps, the expected depth of
t :: TList a is log (length t) when the
priorities are random.

2. Implement (!!) :: TList a → Int → a such that xs !! n = toList xs !! n
for any xs :: TList a and n. The function should run in O(depth t)
time. depth :: TList a → Int

depth EmptyT = 0
depth (NodeT l r) = 1 + max (depth l) (depth r)3. Implement (++) :: TList a → TList a → TList a in a way similar

to merge :: Treap a → Treap a → Treap a (see Exercise 6.5). The
time complexity of xs ++ ys should be in O(depth xs + depth ys).
Explain why the indices of the elements are not stored in TList
nodes. Both tail and init are special cases of

splitAt.
4. Implement splitAt :: Int → TList a → (TList a, TList a) in a way

similar to split in Exercise 6.6 such that if (xs, ys) = split n zs then
xs ++ ys = zs and length xs = n. The time complexity of split n xs
should be in O(depth xs).

