
COMP50001: Algorithm Design & Analysis
Sheet 6 (Week 7)

Exercise 6.1

Notice that the definition of montePi only generates random x and y
values between 0 and 1, thus only hitting points in one quadrant of
the square. Explain why this measure approximates π/4.

montePi :: Double
montePi = loop (mkStdGen 42) 0 0 where

loop seed m n
| n ≡ 100000 =

4 ∗ fromIntegral m / fromIntegral n
| otherwise = loop seed′′ m′ n′

where n′ = n + 1
m′ = if inside (x, y) then m + 1 else m
(x, seed′) = randomR (0, 1) seed
(y, seed′′) = randomR (0, 1) seed′

inside :: (Double, Double)→ Bool
inside (x, y) = x ∗ x + y ∗ y ⩽ 1

Exercise 6.2

Devise a randomized Monte Carlo algorithm to find the value of√
2. It need not be efficient. Hint: Consider the ratio of values between

0 and 2 that are less than
√

2.

Exercise 6.3

insertBTree′ :: Ord a⇒ a→ RBTree a→ RBTree a
insertBTree′ x (RBTree seed n t)
| p ≡ 0 = RBTree seed′ (n + 1)

(insertRoot x t)
| otherwise = RBTree seed′ (n + 1)

(insertBTree x t)
where
(p, seed′) = randomR (0, n) seed

The insertBTree′ function does not produce correct results when
the same element is inserted more than once, since it always incre-
ments the size of the tree even when no new elements are added.
Discuss how the implementation can be changed without affecting
asymptotic complexity.

Exercise 6.4

data Treap a = Empty | Node (Treap a) a Int (Treap a)

insert :: Ord a⇒ a→ Int→ Treap a→ Treap a
insert x p Empty = Node Empty x p Empty
insert x p (Node lt y q rt)
| x < y = lnode (insert x p lt) y q rt
| x ≡ y = Node lt y q rt
| x > y = rnode lt y q (insert x p rt)

lnode :: Treap a→ a→ Int→ Treap a→ Treap a
lnode Empty y q rt = Node Empty y q rt
lnode lt@(Node llt x p lrt) y q rt
| q ⩽ p = Node lt y q rt
| otherwise = Node llt x p (Node lrt y q rt)

rnode :: Treap a→ a→ Int→ Treap a→ Treap a
rnode lt x p Empty = Node lt x p Empty
rnode lt x p rt@(Node rlt y q rrt)
| p ⩽ q = Node lt x p rt
| otherwise = Node (Node lt x p rlt) y q rrt

Prove that for a set of integers, each paired with a priority

S = {(xi, pi) | 1 ⩽ i ⩽ n}

where xi, pi :: Int, if xi ̸= xj and pi ̸= pj for any i ̸= j, then there is a
unique t :: Treap Int such that t satisfies the invariant of treaps and
nodes t contains the same set of elements as S, where

nodes :: Treap a→ [(a, Int)]
nodes Empty = []

nodes (Node lt x p rt) = (x, p) : nodes lt ++ nodes rt

Argue that as a consequence inserting the elements {(xi, pi)}
into a treap in different orders gives rise to the same treap, assum-
ing all elements and priorities are distinct.

Exercise 6.5

Given lt, rt :: Treap a such that x ⩽ y for any (x,) in nodes lt and
any (y,) in nodes rt, prove that merge lt rt satisfies the invariants of
treaps.

merge :: Treap a→ Treap a→ Treap a
merge Empty rt = rt
merge lt Empty = lt
merge lt@(Node llt x p lrt) rt@(Node rlt y q rrt)
| p < q = Node llt x p (merge lrt rt)
| otherwise = Node (merge lt rlt) y q rrtExercise 6.6

Implement a split :: Ord a ⇒ Treap a → a → (Treap a, Treap a) such
that split t x computes (lt, rt) where lt contains exactly

filter (λ(y,)→ y < x) (nodes t)

comp50001: algorithm design & analysis 2

as nodes and rt contains exactly
merge is a right-inverse of split:

uncurry merge (split t x) = t

filter (λ(y,)→ y ⩾ x) (nodes t)

It should run in O(depth t) time.
depth :: Treap a→ Int
depth Empty = 0
depth (Node lt x p rt) = 1 + max (depth lt) (depth rt)

Exercise 6.7

Implement insertion and deletion for treaps using only merge and
split

insert′ :: Ord a⇒ a→ Int→ Treap a→ Treap a
delete′ :: Ord a⇒ a→ a→ Treap a→ Treap a

such that delete′ x y t removes all elements in interval [x, y) from t.
In this exercise, we allow duplicate elements in a treap.

Exercise 6.8

Unordered lists, i.e. the List type class, can be efficiently imple-
mented by a variant of treaps in which the indices of a list 0, . . . ,
length xs− 1 are used as the ordered keys (the x in Node lt x p rt) of
a treap and the list elements are stored as payloads in treap nodes.
Define

These following functions are useful in
this exercise:

length :: TList a→ Int
length EmptyT = 0
length (NodeT s) = s

payload :: TList a→ a
payload EmptyT = error "empty"
payload (NodeT x) = x

priority :: TList a→ Int
priority EmptyT = error "empty"
priority (NodeT p) = p

data TList a = EmptyT | NodeT (TList a) Int a Int (TList a)

with invariants that any NodeT lt s x p rt satisfies

s = length lt + length rt + 1

and the heap invariant that p ⩽ priority lt and p ⩽ priority rt
whenever lt or rt is not empty. Note that the indices are not stored
in the nodes. The list represented by a TList a is

toList :: TList a→ [a]
toList EmptyT = []

toList (NodeT lt x rt) = toList lt ++ [x] ++ toList rt

1. Implement single :: MonadRandom m ⇒ a → m (TList a) that
creates a singleton list from an element with a random priority
generated using the MonadRandom interface.

Same as treaps, the expected depth of
t :: TList a is log (length t) when the
priorities are random.

2. Implement (!!) :: TList a→ Int→ a such that xs !! n = toList xs !! n
for any xs :: TList a and n. The function should run in O(depth t)
time. depth :: TList a→ Int

depth EmptyT = 0
depth (NodeT l r) = 1 + max (depth l) (depth r)3. Implement (++) :: TList a → TList a → TList a in a way similar

to merge :: Treap a → Treap a → Treap a (see Exercise 6.5). The
time complexity of xs ++ ys should be in O(depth xs + depth ys).
Explain why the indices of the elements are not stored in TList
nodes. Both tail and init are special cases of

splitAt.
4. Implement splitAt :: Int → TList a → (TList a, TList a) in a way

similar to split in Exercise 6.6 such that if (xs, ys) = split n zs then
xs ++ ys = zs and length xs = n. The time complexity of split n xs
should be in O(depth xs).

comp50001: algorithm design & analysis 3

Solutions to the Exercises

Solution 6.1

The ratio between a circle with radius 1 and a square with sides
of length 2 is the same as the ratio between a quarter circle with
radius 1 and a square with sides of length 1. This can easily be
show with some algebra:

π : 2× 2⇔ π/4 : 4/4

Solution 6.2

A possible way of sampling is

root2 :: Double
root2 = loop (mkStdGen 42) 0 0 where

loop seed m n
| n ≡ 100000 = 9 ∗m / fromIntegral n
| otherwise = loop seed′ m′ n′

where n′ = n + 1
m′ = if inside x then m + 1 else m
(x, seed′) = randomR (0, 9) seed

inside :: Double→ Bool
inside x = x ∗ x ⩽ 2

Solution 6.3

There are two potential solutions. The first is to redefine insertBTRee
and insertRoot so that they return a flag indicating whether a value
was actually inserted. This can then be inspected in insertBTree′ and
the counter can be incremented when appropriate.

A second solution is to store the size in the BNode constructor,
and to use smart constructors that increment the size only when a
value has indeed been inserted.

Solution 6.4

Prove by induction on the size of S.

1. If n = 0, the unique choice of t is Empty.

2. If n > 0, suppose t is treap with nodes t = S. Because treap t
is a heap in the priorities of the nodes, the root node of t must
have the highest priority. By the assumption that all priorities
are distinct, the node with the highest priority is unique. Let the
root be (xr, pr) ∈ S for some r. The left subtree of the root must
contain the nodes The assumption that all xi are distinct

guarantees that S = Sl ∪ Sr ∪ {(xr , pr)}
Sl = {(xi, pi) | 1 ⩽ i ⩽ n, xi < xr}

comp50001: algorithm design & analysis 4

and the right subtree must contain the nodes

Sr = {(xi, pi) | 1 ⩽ i ⩽ n, xi > xr}

because the treap t is also a binary search tree in terms of the
keys xi. Since the sizes of Sl and Sr are strictly smaller than S, by
the inductive hypothesis, the left and right subtrees are uniquely
determined. Thus t is unique.

The order of insertions into a treap does not matter because of
the uniqueness of the treap containing the set of nodes.

Solution 6.5

Suppose lt and rt satisfy the invariants of treaps. If lt or rt is empty,
merge lt rt must satisfy the invariants because

merge Empty rt = rt and merge lt Empty = lt

Otherwise lt is some Node llt x p lrt and rt is Node rlt y q rrt. If p < q
(priority p is higher than q), merge lt rt is

Node llt x p (merge lrt rt)
(1)

Because lrt is strictly smaller than lt, we can assume that merge lrt rt
is a treap from the inductive hypothesis. To see that the result of
merging (1) satisfies the BST invariant of treaps, notice that every
(z, r) in nodes (merge lrt rg) comes from either rt or lrt. In either
case, z ⩽ x by the assumption in the exercise or the BST invariant of
lt. The result (1) also respects the heap invariant of treaps because
if (z, r) is from lrt, then r ⩾ p by the heap invariant lt of (lrt is the
right subtree of lt = Node llt x p lrt), and if (z, r) is from rt, then
r ⩾ q ⩾ p (q is the priority of the root node of rt). The symmetric
case p ⩾ q is similar.

Solution 6.6

This can be done by

split :: Ord a⇒ Treap a→ a→ (Treap a, Treap a)
split Empty = (Empty, Empty)
split (Node lt y p rt) x
| y < x = let (rlt, rrt) = split rt x in (Node lt y p rlt, rrt)
| otherwise = let (llt, lrt) = split lt x in (llt, Node lrt y p rt)

Solution 6.7

Both insert′ and delete′ can be straightforwardly expressed as merge
and split:

insert′ :: Ord a⇒ a→ Int→ Treap a→ Treap a
insert′ x p t = merge lt (merge (Node Empty x p Empty) rt)

comp50001: algorithm design & analysis 5

where (lt, rt) = split t x

delete′ :: Ord a⇒ a→ a→ Treap a→ Treap a
delete′ x y t = merge lt rrt where
(lt, rt) = split t x
(rlt, rrt) = split rt y

Solution 6.8

Define a smart constructor to be used throughout this exercise:

node :: TList a→ a→ Int→ TList a→ TList a
node lt x p rt = NodeT lt (length lt + 1 + length rt) x p rt

1. A random priority can be generated by the getRandom function
from the MonadRandom interface:

single :: MonadRandom m⇒ a→ m (TList a)
single a = do p← getRandom

return (node EmptyT a p EmptyT)

2. Lookup can be done as follows:

(!!) :: TList a→ Int→ a
EmptyT !! n = error "out of bounds"

(NodeT lt x rt) !! n
| n < length lt = lt !! n
| n ≡ length lt = x
| otherwise = rt !! (n− length lt− 1)

It clearly runs in O(depth t) for input t because each recursion
descends into a subtree.

3. It can be done as follows:

(++) :: TList a→ TList a→ TList a
xs ++ EmptyT = xs
EmptyT ++ ys = ys
lt@(NodeT llt x p lrt) ++ rt@(NodeT rlt y q rrt)
| p < q = node llt x p (lrt ++ rt)
| otherwise = node (lt ++ rlt) y q rrt

We do not store the indices of nodes explicitly because when
two TList’s are concatenated using xs ++ ys, the indices of all el-
ements in the second list are shifted by length xs. Thus it would
need Ω(length ys) time to update these indices if they are explic-
itly stored, which is too expensive. Instead, the indices in TList
are implicitly calculated using the second field of NodeT when
needed.

4. It can be done as follows:

comp50001: algorithm design & analysis 6

splitAt :: Int→ TList a→ (TList a, TList a)
splitAt EmptyT = (EmptyT, EmptyT)
splitAt n (NodeT lt x p rt)
| length lt < n = let (rlt, rrt) = splitAt (n− length lt− 1) rt in (node lt x p rlt, rrt)
| otherwise = let (llt, lrt) = splitAt n lt in (llt, node lrt x p rt)

