
COMP50001: Algorithm Design & Analysis
Sheet 5 (Week 6)

Exercise 5.1

When implementing an AVL tree, at each node it is possible to store
just the difference in height between the two children. According to
the invariants on an AVL tree, the bias can either be −1, 0, or 1.

data HTree a = HTip
| HNode Int (HTree a) a (HTree a)

data DTree a = DTip
| DNode Diff (DTree a) a (DTree a)

data Diff = MinusOne | Zero | PlusOne

Implement insert :: Ord a ⇒ a → DTree a → DTree a and
delete :: Ord a ⇒ a → DTree a → DTree a on DTree, an AVL tree which
stores differences rather than heights.

Exercise 5.2
fromOrdList :: [a] → HTree a
fromOrdList xs = fst (go (length xs) xs)

where
go :: Int → [a] → (HTree a, [a])
go = . . .

Write a function fromOrdList :: [a] → HTree a which builds an AVL
tree from a sorted list in worst case linear time.

Exercise 5.3 member :: Ord a ⇒ a → HTree a → Bool
member x HTip = False
member x (HNode lte p gt)

| x < p = member x lte
| x ≡ p = True
| otherwise = member x gt

A possible implementation strategy
is to carry the most recent element
that could be equal to the one being
searched for with you; when you hit
the bottom of the tree the you can test
for equality.

The implementation of member presented in lectures uses 2d com-
parisons in the worst case, where d is the depth of the tree. Reim-
plement member to perform at most d + 1 comparisons, using only
(⩽) to compare elements.

Exercise 5.4

We can define a kind of map on search trees as follows:

mapt :: (a → b) → HTree a → HTree b
mapt f HTip = HTip
mapt f (HNode b ls x rs) = HNode b (mapt f ls) (f x) (mapt f rs)

Describe the minimal condition to which f must adhere in order for
the output of mapt f to be a valid search tree, given valid input. mapt abs

0

-2

-3 -1

2

1 3

=

0

2

3 1

2

1 3

Define a function mapt′ :: Ord b ⇒ (a → b) → Tree a → Tree b
which does not require f to adhere to your condition in order to
produce a valid tree.

Exercise 5.5

instance Monoid ([a], [a]) where
ϵ = ([], [])
(xl, xr) ⋄(yl, yr) = (xl ++ yl, xr ++ yr)

Here is the type of compare:

compare :: Ord a ⇒ a → a → Ordering

The result of compare x y returns LT,
EQ or GT depending on whether x < y,
x ≡ y, or x > y.

data Ordering = LT | EQ | GT

There is a monoid instance on pairs of lists. Define a monoid in-
stance for Ordering such that uncurry compare on pairs of lists of the
same length is a monoid homomorphism.

Exercise 5.6

Consider a data type representing a set, implemented using AVL
trees. The trees will contain no duplicates. Write an Eq instance
for this type. (≡) should be linear, and should not differentiate
between trees which are balanced differently.

2

1 4

3 5

≡

4

2

1 3

5

Given sets xs and ys, f is defined to be well behaved if it obeys:

comp50001: algorithm design & analysis 2

xs ≡ ys ⇒ f xs ≡ f ys

Discuss whether the functions member x or insert x are well be-
haved. Give other examples of well behaved and non-well behaved
functions.

Exercise 5.7

The Boom hierarchy is a classification of data structures based on
laws. Given some data structure S a, with a function insert :: a →
S a → S a, and (∪) :: S a → S a → S a, we can classify it as one of 16

different structures depending on which of the following laws hold:

(x ∪ y) ∪ z = x ∪ (y ∪ z) (associativity, 1)

∅ ∪ x = x = x ∪ ∅ (identity, 2)

x ∪ y = y ∪ x (commutativity, 3)

x ∪ x = x (idempotence, 4)

Name the data structures which obey the following laws:

1. 1 only.

2. 1 and 2 only.

3. 1, 2, and 3 only.

4. 1, 2, 3, and 4.

Exercise 5.8

While AVL trees measure imbalance by the height of siblings,
weight-balanced trees use the number of elements in each sibling.

data WTree a = WTip
| WNode Int (WTree a) a (WTree a)

As in an AVL tree, the tree is rebalanced by single or double
rotations. A rebalancing is triggered when the ratio of sizes of
two subtrees exceeds some predefined factor, called ∆. A double
rotation is triggered if, inside the larger subtree, the ratio of sizes of
its two children exceed some factor Γ.

Write a function insert :: Ord a ⇒ a → WTree a → WTree a. Your
code should define ∆ and Γ as constants; you may set them to 3 and
2 respectively for testing.

Describe how the performance characteristics of insert and
member might change if we were to raise or lower ∆ and Γ.

Exercise 5.9

Define a linear-time function invariants :: Ord a ⇒ RBTree a → Bool
which tests that the following invariants hold on an RBTree:

data Colour = R | B deriving Eq

data RBTree a
= RBTip
| RBNode Colour (RBTree a) a (RBTree a)

1. It is an ordered binary search tree with no duplicates.

2. Every red node has a black parent.

3. There are the same number of black nodes on any path from
root to tip.

