
COMP50001: Algorithm Design & Analysis
Sheet 5 (Week 6)

Exercise 5.1

When implementing an AVL tree, at each node it is possible to store
just the difference in height between the two children. According to
the invariants on an AVL tree, the bias can either be −1, 0, or 1.

data HTree a = HTip
| HNode Int (HTree a) a (HTree a)

data DTree a = DTip
| DNode Diff (DTree a) a (DTree a)

data Diff = MinusOne | Zero | PlusOne

Implement insert :: Ord a ⇒ a → DTree a → DTree a and
delete :: Ord a⇒ a→ DTree a→ DTree a on DTree, an AVL tree which
stores differences rather than heights.

Exercise 5.2
fromOrdList :: [a]→ HTree a
fromOrdList xs = fst (go (length xs) xs)

where
go :: Int→ [a]→ (HTree a, [a])
go = . . .

Write a function fromOrdList :: [a] → HTree a which builds an AVL
tree from a sorted list in worst case linear time.

Exercise 5.3 member :: Ord a⇒ a→ HTree a→ Bool
member x HTip = False
member x (HNode lte p gt)
| x < p = member x lte
| x ≡ p = True
| otherwise = member x gt

A possible implementation strategy
is to carry the most recent element
that could be equal to the one being
searched for with you; when you hit
the bottom of the tree the you can test
for equality.

The implementation of member presented in lectures uses 2d com-
parisons in the worst case, where d is the depth of the tree. Reim-
plement member to perform at most d + 1 comparisons, using only
(⩽) to compare elements.

Exercise 5.4

We can define a kind of map on search trees as follows:

mapt :: (a→ b)→ HTree a→ HTree b
mapt f HTip = HTip
mapt f (HNode b ls x rs) = HNode b (mapt f ls) (f x) (mapt f rs)

Describe the minimal condition to which f must adhere in order for
the output of mapt f to be a valid search tree, given valid input. mapt abs

0

-2

-3 -1

2

1 3

=

0

2

3 1

2

1 3

Define a function mapt′ :: Ord b ⇒ (a → b) → Tree a → Tree b
which does not require f to adhere to your condition in order to
produce a valid tree.

Exercise 5.5

instance Monoid ([a], [a]) where
ϵ = ([], [])
(xl, xr) ⋄(yl, yr) = (xl ++ yl, xr ++ yr)

Here is the type of compare:

compare :: Ord a⇒ a→ a→ Ordering

The result of compare x y returns LT,
EQ or GT depending on whether x < y,
x ≡ y, or x > y.

data Ordering = LT | EQ | GT

There is a monoid instance on pairs of lists. Define a monoid in-
stance for Ordering such that uncurry compare on pairs of lists of the
same length is a monoid homomorphism.

Exercise 5.6

Consider a data type representing a set, implemented using AVL
trees. The trees will contain no duplicates. Write an Eq instance
for this type. (≡) should be linear, and should not differentiate
between trees which are balanced differently.

2

1 4

3 5

≡

4

2

1 3

5

Given sets xs and ys, f is defined to be well behaved if it obeys:

comp50001: algorithm design & analysis 2

xs ≡ ys⇒ f xs ≡ f ys

Discuss whether the functions member x or insert x are well be-
haved. Give other examples of well behaved and non-well behaved
functions.

Exercise 5.7

The Boom hierarchy is a classification of data structures based on
laws. Given some data structure S a, with a function insert :: a →
S a → S a, and (∪) :: S a → S a → S a, we can classify it as one of 16

different structures depending on which of the following laws hold:

(x ∪ y) ∪ z = x ∪ (y ∪ z) (associativity, 1)

∅ ∪ x = x = x ∪∅ (identity, 2)

x ∪ y = y ∪ x (commutativity, 3)

x ∪ x = x (idempotence, 4)

Name the data structures which obey the following laws:

1. 1 only.

2. 1 and 2 only.

3. 1, 2, and 3 only.

4. 1, 2, 3, and 4.

Exercise 5.8

While AVL trees measure imbalance by the height of siblings,
weight-balanced trees use the number of elements in each sibling.

data WTree a = WTip
| WNode Int (WTree a) a (WTree a)

As in an AVL tree, the tree is rebalanced by single or double
rotations. A rebalancing is triggered when the ratio of sizes of
two subtrees exceeds some predefined factor, called ∆. A double
rotation is triggered if, inside the larger subtree, the ratio of sizes of
its two children exceed some factor Γ.

Write a function insert :: Ord a ⇒ a → WTree a → WTree a. Your
code should define ∆ and Γ as constants; you may set them to 3 and
2 respectively for testing.

Describe how the performance characteristics of insert and
member might change if we were to raise or lower ∆ and Γ.

Exercise 5.9

Define a linear-time function invariants :: Ord a ⇒ RBTree a → Bool
which tests that the following invariants hold on an RBTree:

data Colour = R | B deriving Eq

data RBTree a
= RBTip
| RBNode Colour (RBTree a) a (RBTree a)

1. It is an ordered binary search tree with no duplicates.

2. Every red node has a black parent.

3. There are the same number of black nodes on any path from
root to tip.

comp50001: algorithm design & analysis 3

Solutions to the Exercises

Solution 5.1

The insert x function makes use of an auxiliary function:

ins :: Ord a⇒ DTree a→ (Bool, DTree a)

Given the result ins t = (bl, t′), t′ is the tree that results from in-
serting x into t. If bl is True this indicates that the height of t′ is one
more than the height of t. Otherwise they have the same height.

insert :: Ord a⇒ a→ DTree a→ DTree a
insert x t = snd (ins t)

Now the ins function is defined by case analysis on the tree. If it
is empty then the height is increased by the insertion of x, and the
new tree is balanced.

where
ins DTip = (True, DNode Zero DTip x DTip)

Otherwise, the tree is made up of subtrees lt and rt, and case anal-
ysis is required between x and y. If x ≡ y, then the original tree can
be returned, and the height has not changed.

ins (DNode bl lt y rt) = case compare x y of
EQ→ (False, DNode bl lt x rt)

If x ⩽ y then further analysis is required. The value x should be
inserted into lt, and what to do depends on whether the result has
increased the height of lt. In the first case, the height is unchanged
and so the new tree can be constructed with lt′ as the new subtree.

LT →
case ins lt of

(False, lt′) → (False, DNode bl lt′ y rt)

Otherwise, the height has changed and some adjustment may be
needed, depending on the imbalance indicated by bl of the original
tree, so case analysis is required.

(True, lt′) →
case bl of

If the difference was originally −1 then the additional height of lt′

will restore balance and the overall height is unchanged:

MinusOne→ (False, DNode Zero lt′ y rt)

If the tree was originally balanced then the additional height of lt′

will add one to the difference, and the new tree height has been
adjusted.

Zero → (True, DNode PlusOne lt′ y rt)

comp50001: algorithm design & analysis 4

Otherwise, the original tree was already larger in the left side, and
the additional of height that side forces a rotation to the right to
restore balance. This is achieved through a call to rotr, which will
be explained later.

PlusOne → rotr lt′ y rt

The GT case is symmetric, rotating to the left when there is too
much imbalance.

GT →
case ins rt of
(False, rt′)→ (False, DNode bl lt y rt′)
(True, rt′) →

case bl of
PlusOne → (False, DNode Zero lt y rt′)
Zero → (True, DNode MinusOne lt y rt′)
MinusOne→ rotl lt y rt′

Now time to understand how the rotations work. This is essentially
the same as rotations for an AVL tree, except that care must be
taken to report whether the height of the tree was changed after the
rotation, and whether there remains any imbalance. The first two
cases are a fairly straightforward adaption of the code:

rotr :: DTree a→ a→ DTree a→ (Bool, DTree a)
rotr (DNode PlusOne a y b) x c = (False, DNode Zero a y (DNode Zero b x c))
rotr (DNode Zero a y b) x c = (True, DNode MinusOne a y (DNode PlusOne b x c))

The final case is where a rotation to the right has been required, but
the tree to the left is one shorter than that to the right.

rotr (DNode MinusOne a y (DNode bl b z c)) x d =

(False, DNode Zero (DNode (balr bl) a y b) z (DNode (ball bl) c x d))

balr PlusOne = Zero
balr Zero = Zero
balr MinusOne = PlusOne

ball PlusOne = MinusOne
ball Zero = Zero
ball MinusOne = Zero

The code for rotl mirrors that of rotr.

rotl :: DTree a→ a→ DTree a→ (Bool, DTree a)
rotl c x (DNode MinusOne b y a) = (False, DNode Zero (DNode Zero c x b) y a)
rotl c x (DNode Zero b y a) = (True, DNode PlusOne (DNode MinusOne c x b) y a)
rotl d x (DNode PlusOne (DNode bl c z b) y a) =
(False, DNode Zero (DNode (balr bl) d x c) z (DNode (ball bl) b y a))

Deleting a node works using analysis similar to insert, and is a
good exercise to try.

comp50001: algorithm design & analysis 5

deleteD :: Ord a⇒ a→ DTree a→ DTree a
deleteD k = snd ◦ del

where
del DTip = (True, DTip)
del (DNode b lt k′ rt) =

case compare k k′ of
LT →

case del lt of
(True, lt′)→ (True, DNode b lt′ k′ rt)
(False, lt′)→

case b of
PlusOne→ (False, DNode Zero lt′ k′ rt)
Zero→ (True, DNode MinusOne lt′ k′ rt)
MinusOne→ (rotl lt′ k′ rt)

GT →
case del rt of
(True, rt′)→ (True, DNode b lt k′ rt′)
(False, rt′)→

case b of
PlusOne→ (rotr lt k′ rt′)
Zero→ (True, DNode PlusOne lt k′ rt′)
MinusOne→ (False, DNode Zero lt k′ rt′)

EQ→
case rt of

DTip→ (False, lt)
DNode br tlr kr trr→

case b of
PlusOne→

case uncons kr br tlr trr of
(k′′, False, rt′)→

rotr lt k′′ rt′

(k′′, True, rt′)→
(True, DNode PlusOne lt k′′ rt′)

Zero→
case uncons kr br tlr trr of
(k′′, False, rt′)→
(True, DNode PlusOne lt k′′ rt′)

(k′′, True, rt′)→
(True, DNode Zero lt k′′ rt′)

MinusOne→
case uncons kr br tlr trr of
(k′′, False, rt′)→
(False, DNode Zero lt k′′ rt′)

(k′′, True, rt′)→
(True, DNode MinusOne lt k′′ rt′)

uncons
:: a
→ Diff
→ DTree a

comp50001: algorithm design & analysis 6

→ DTree a
→ (a, Bool, DTree a)

uncons k′ bl′ lt′ rt′ = go k′ bl′ lt′ rt′ id
where

go k Zero DTip rt c = uncurry ((, ,) k) (c (False, rt))
go k Zero (DNode bl tll kl trl) rt c =

go kl bl tll trl
λcase
(False, ntl)→ c (True, (DNode MinusOne ntl k rt))
(True, ntl)→ c (True, (DNode Zero ntl k rt))

go k MinusOne DTip rt c = uncurry ((, ,) k) (c (False, rt))
go k MinusOne (DNode bl tll kl trl) rt c =

go kl bl tll trl
λcase
(False, ntl)→ c (rotl ntl k rt)
(True, ntl)→ c (True, DNode MinusOne ntl k rt)

go k PlusOne (DNode bl tll kl trl) rt c =
go kl bl tll trl
λcase
(False, ntl)→ c (False, DNode Zero ntl k rt)
(True, ntl)→ c (True, DNode PlusOne ntl k rt)

Solution 5.2

The standard solution is as follows:

fromOrdList :: [a]→ HTree a
fromOrdList xs = fst (go (length xs) xs)

where
go :: Int→ [a]→ (HTree a, [a])
go 0 xs = (HTip, xs)
go n xs1 =

let
m = n ‘div‘ 2
(lhs , x : xs2) = go m xs1

(rhs, xs3) = go (n−m− 1) xs2

in (HNode (1 + max (height lhs) (height rhs)) lhs x rhs, xs3)

height HTip = 0
height (HNode x) = x

However we can also implement it in the continuation-passing
style:

fromOrdList :: [a]→ HTree a
fromOrdList xs = go (length xs) xs const

where
go :: Int→ [a]→ (HTree a→ [a]→ b)→ b
go 0 xs k = k HTip xs
go n xs1 k =

let m = n ‘div‘ 2 in

comp50001: algorithm design & analysis 7

go m xs1λlhs (x : xs2)→
go (n−m− 1) xs2λrhs xs3 →
k (HNode (1 + max (height lhs) (height rhs)) lhs x rhs) xs3

height HTip = 0
height (HNode x) = x

Solution 5.3

member :: Ord a⇒ a→ HTree a→ Bool
member x HTip = False
member x (HNode lte p gt)

| x ⩽ p = go p x lte
| otherwise = member x gt

where
go y x HTip = y ⩽ x
go y x (HNode lte p gt)
| x ⩽ p = go p x lte
| otherwise = go y x gt

member :: Ord a⇒ a→ HTree a→ Bool
member = go Nothing

where
go s x HTip = maybe False (⩽ x) s
go s x (HNode lte p gt)
| x ⩽ p = go (Just p) x lte
| otherwise = go s x gt

Solution 5.4

mapt f will produce valid output from valid input if f obeys the
following condition (for all x and y):

x ⩽ y⇒ f x ⩽ f y

A version of mapt which does not require f to follow that condi-
tion is the following:

mapt :: Ord b⇒ (a→ b)→ Tree a→ Tree b
mapt f = fromList ◦map f ◦ toList

Solution 5.5

The monoid on ordering we’ll need is the monoid for lexicographic
comparisons.

instance Monoid Ordering where
ϵ = EQ

EQ ⋄ y = y
x ⋄ = x

comp50001: algorithm design & analysis 8

Solution 5.6

To compare for equality while ignoring the balancing, we can con-
vert to a list:

hTreeToList :: HTree a→ [a]
hTreeToList rt = go rt []

where
go HTip ks = ks
go (HNode lt p gt) ks = go lt (p : go gt ks)

And then compare those lists, rather than the trees:

instance Eq a⇒ Eq (HTree a) where
xs ≡ ys = hTreeToList xs ≡ hTreeToList ys

Both member and insert are well behaved.
hTreeToList is an example of another function which is well be-

haved. A function which doesn’t follow the law is something like:

getRoot :: HTree a→ Maybe a
getRoot HTip = Nothing
getRoot (HNode x) = Just x

Solution 5.7

1. Trees

2. Lists

3. Bags

4. Sets

Solution 5.8

The main idea of this question is implemented in Data.Set. The
values delta and gamma are set as global constants.

delta, gamma :: Int
delta = 3
gamma = 2

It helps to have size defined, and for there to be a smart construc-
tor for nodes that respect this.

size (WTip) = 0
size (WNode s) = s

wnode :: WTree a→ a→ WTree a→ WTree a
wnode l x r = WNode (size l + size r + 1) l x r

The insert function will insert into the tree and rebalance with
the smart constructor balance that balances teh tree.

comp50001: algorithm design & analysis 9

insert :: Ord a⇒ a→ WTree a→ WTree a
insert x WTip = WNode 1 WTip x WTip
insert x t@(WNode s l y r) = case compare x y of

LT → balance (insert x l) y r
GT → balance l y (insert x r)
EQ→ WNode s l x r

balance :: WTree a→ a→ WTree a→ WTree a
balance l x r
| sL + sR ⩽ 1 = WNode s′ l x r
| sR > delta ∗ sL = rotl l x r
| sL > delta ∗ sR = rotr l x r
| otherwise = WNode s′ l x r

where
sL = size l
sR = size r
s′ = sL + sR + 1

rotl l x r@(WNode ly ry)
| size ly < gamma ∗ size ry = singleL l x r
| otherwise = doubleL l x r

rotr l@(WNode ly ry) x r
| size ry < gamma ∗ size ly = singleR l x r
| otherwise = doubleR l x r

singleL a x (WNode b y c) = wnode (wnode a x b) y c
singleR (WNode a y b) x c = wnode a y (wnode b x c)

doubleL a x (WNode (WNode b z c) y d) = wnode (wnode a x b) z (wnode c y d)
doubleR (WNode a y (WNode b z c)) x d = wnode (wnode a y b) z (wnode c x d)

Increasing either of the constants will mean fewer rotations,
but a potentially more imbalanced tree (and vice-versa). 2 and 3

are chosen here because those values maintain the logarithmic
asympotics of these functions, and also have good performance
empirically.

Solution 5.9

Checking the colour invariants can be done in one pass:

colourInvar :: RBTree a→ Bool
colourInvar rt = (colour rt ≡ B) ∧ isJust (go rt)

where
go :: RBTree a→ Maybe Int
go RBTip = Just 1
go (RBNode R xs ys) = do

guard (colour xs ≡ B)
guard (colour ys ≡ B)
x← go xs
y← go ys
guard (x ≡ y)
pure x

comp50001: algorithm design & analysis 10

go (RBNode B xs ys) = do
x← go xs
y← go ys
guard (x ≡ y)
pure (x + 1)

colour RBTip = B
colour (RBNode c) = c

There are two general approaches to checking the order invari-
ant. Perhaps the clearest is to first define a function that checks that
a list is strictly increasing:

strictlyIncreasing :: Ord a⇒ [a]→ Bool
strictlyIncreasing (x1 : x2 : xs) = x1 < x2 ∧ strictlyIncreasing (x2 : xs)
strictlyIncreasing = True

And a function which converts an RBTree to a list:

rbTreetoList :: RBTree a→ [a]
rbTreetoList rt = go rt []

where
go RBTip ks = ks
go (RBNode lt p gt) ks = go lt (p : go gt ks)

And use them in combination (i.e. orderInvar = strictlyIncreasing ◦
rbTreeToList).

If we give the tree a Foldable instance, it is possible to deforest the
intermediate list:

instance Foldable RBTree where
foldr f b rt = go rt b

where
go RBTip b = b
go (RBNode lt p gt) b = go lt (f p (go gt b))

orderInvar :: Ord a⇒ RBTree a→ Bool
orderInvar xs = foldr (f ◦ Just) (const True) xs Nothing

where
f y k x = x < y ∧ k y

And finally, there is a way that recurses on the tree itself more
directly:

orderInvar :: Ord a⇒ RBTree a→ Bool
orderInvar = isJust ◦ go

where
go RBTip = Just Nothing
go (RBNode lt x gt) = do

lt′ ← go lt
gt′ ← go gt
guard (maybe True (λ(, s)→ s < x) lt′)
guard (maybe True (λ(s,)→ x < s) gt′)
pure (Just (maybe x fst lt′, maybe x snd gt′))

comp50001: algorithm design & analysis 11

This function returns the extrema of a valid binary search tree as an
intermediate step.

Regardless of the particular implementation of orderInvar chosen,
the function invariants can be implemented as follows:

invariants rt = orderInvar rt ∧ colourInvar rt

Extended Red-Black Tree implementation

A previous version of this exercise sheet asked for an implemen-
tation of delete on red-black trees. This was quickly removed once
it became clear that it would take far too much time to answer.
However, it is still an instructive algorithm, so we will include the
solution here.

First we need some of the basic functions already used for insert:

balance :: Colour→ RBTree a→ a→ RBTree a→ RBTree a
balance B (RBNode R (RBNode R a x b) y c) z d = RBNode R (RBNode B a x b) y (RBNode B c z d)
balance B (RBNode R a x (RBNode R b y c)) z d = RBNode R (RBNode B a x b) y (RBNode B c z d)
balance B a x (RBNode R (RBNode R b y c) z d) = RBNode R (RBNode B a x b) y (RBNode B c z d)
balance B a x (RBNode R b y (RBNode R c z d)) = RBNode R (RBNode B a x b) y (RBNode B c z d)
balance c lt p gt = RBNode c lt p gt

blacken :: RBTree a→ RBTree a
blacken (RBNode R lt p gt) = RBNode B lt p gt
blacken t = t

redden :: RBTree a→ RBTree a
redden (RBNode a x b) = RBNode R a x b
redden RBTip = error "cannot redden leaf"

insert :: Ord a⇒ a→ RBTree a→ RBTree a
insert x xs = blacken (ins xs)

where
ins RBTip = RBNode R RBTip x RBTip
ins (RBNode c lt p gt) = case compare x p of

LT → balance c (ins lt) p gt
EQ→ RBNode c lt p gt
GT → balance c lt p (ins gt)

Then, to write delete, we need to handle several more imbalanced
cases. The algorithm this implementation is based was written by
Matt Might, although his solution accomplished its task by adding
two new colours (double black and “negative black”, which we call
double red), which we avoid here. Adding two new colours would
mean infecting the insertion code in a way it doesn’t need to be.
Instead, we define the following types:

data Doubling = S | D

data Doubled a = Doubling ▶ a

single :: Doubled a→ a
single (▶ x) = x

comp50001: algorithm design & analysis 12

This allows us to have “double black” as D ▶ B, and a tree with a
double black root would be D ▶ RBNode B lt p gt. This works since
it is only ever the root elements which get the “double” colours.

Other than that change, the rest of the functions are relatively
unchanged from Might’s algorithm. First we have the double bal-
ance:

redderTree :: Doubled (RBTree a)→ Doubled (RBTree a)
redderTree (S ▶ RBTip) = error "cannot redder single B leaf"

redderTree (D ▶ RBTip) = (S ▶ RBTip)
redderTree (S ▶ RBNode R l x r) = (D ▶ RBNode R l x r)
redderTree (S ▶ RBNode B l x r) = (S ▶ RBNode R l x r)
redderTree (D ▶ RBNode B l x r) = (S ▶ RBNode B l x r)
redderTree (D ▶ RBNode R) = error "cannot redder negative B RBNode"

blacker :: Doubled Colour→ Doubled Colour
blacker (D ▶ R) = (S ▶ R)
blacker (S ▶ R) = (S ▶ B)
blacker (S ▶ B) = (D ▶ B)
blacker (D ▶ B) = error "cannot blacker double black"

balanceD :: Doubled Colour→ Doubled (RBTree a)→ a→ Doubled (RBTree a)→ Doubled (RBTree a)
balanceD (S ▶ c) (▶ l) x (▶ r) = (S ▶ balance c l x r)
balanceD (D ▶ B) (S ▶ RBNode R (RBNode R a x b) y c) z (▶ d) =
(S ▶ RBNode B (RBNode B a x b) y (RBNode B c z d))

balanceD (D ▶ B) (S ▶ RBNode R a x (RBNode R b y c)) z (▶ d) =
(S ▶ RBNode B (RBNode B a x b) y (RBNode B c z d))

balanceD (D ▶ B) (▶ a) x (S ▶ RBNode R (RBNode R b y c) z d) =
(S ▶ RBNode B (RBNode B a x b) y (RBNode B c z d))

balanceD (D ▶ B) (▶ a) x (S ▶ RBNode R b y (RBNode R c z d)) =
(S ▶ RBNode B (RBNode B a x b) y (RBNode B c z d))

balanceD (D ▶ B) (S ▶ a) x (D ▶ RBNode R (RBNode B b y c) z d@(RBNode B)) =

(S ▶ RBNode B (RBNode B a x b) y (balance B c z (redden d)))
balanceD (D ▶ B) (D ▶ RBNode R a@(RBNode B) x (RBNode B b y c)) z (S ▶ d) =
(S ▶ RBNode B (balance B (redden a) x b) y (RBNode B c z d))

balanceD (d ▶ c) (▶ lt) p (▶ gt) = (d ▶ RBNode c lt p gt)

And from this we can implement delete:

removeMax :: RBTree a→ (a, Doubled (RBTree a))
removeMax (RBNode c l x RBTip) = (x, remove c l RBTip)
removeMax (RBNode c l x r) = fmap (bubble (S ▶ c) (S ▶ l) x) (removeMax r)
removeMax RBTip = error "cannot remove max from a leaf"

remove :: Colour→ RBTree a→ RBTree a→ Doubled (RBTree a)
remove R RBTip RBTip = (S ▶ RBTip)
remove B RBTip RBTip = (D ▶ RBTip)
remove B RBTip (RBNode R a x b) = (S ▶ RBNode B a x b)
remove B (RBNode R a x b) RBTip = (S ▶ RBNode B a x b)
remove c l r = bubble (S ▶ c) l′ mx (S ▶ r)

where
(mx, l′) = removeMax l

bubble :: Doubled Colour→ Doubled (RBTree a)→ a→ Doubled (RBTree a)→ Doubled (RBTree a)

comp50001: algorithm design & analysis 13

bubble c l@(D ▶ RBTip) x r = balanceD (blacker c) (redderTree l) x (redderTree r)
bubble c l@(D ▶ (RBNode B)) x r = balanceD (blacker c) (redderTree l) x (redderTree r)
bubble c l x r@(D ▶ (RBNode B)) = balanceD (blacker c) (redderTree l) x (redderTree r)
bubble c l x r@(D ▶ RBTip) = balanceD (blacker c) (redderTree l) x (redderTree r)
bubble c l x r = balanceD c l x r

delete :: Ord a⇒ a→ RBTree a→ RBTree a
delete x xs = blacken (single (del xs))

where
del RBTip = (S ▶ RBTip)
del (RBNode c lt y gt) = case compare x y of

LT → bubble (S ▶ c) (del lt) y (S ▶ gt)
EQ→ remove c lt gt
GT → bubble (S ▶ c) (S ▶ lt) y (del gt)

A point to note is that there are a few optimisations one could
make to the balancing functions: we never need to check both sides
for a double colour, as we know which side is changed after an
insertion. Therefore we could have functions balancel and balancer
which get called at the appropriate times. For clarity, we have not
applied this optimisation here.

