COMP50001: Algorithm Design & Analysis

Sheet 4 (Week 5)

Exercise 4.1

1. Give the time complexity of the following *reverse* in terms of the length of a deque:

reverse :: *Deque* $a \rightarrow$ *Deque* a*reverse* = *fromList* \circ *reverse* \circ *toList*

2. Implement a *reverse* for deques that runs in O(1) time.

Exercise 4.2

Supposing xs_0 :: *Deque a* is the empty deque, show that the amortised complexity of each operation in the following sequence is O(1):

$$xs_0 \xrightarrow{op_0} xs_1 \xrightarrow{op_1} xs_2 \xrightarrow{op_2} \dots \xrightarrow{op_{n-1}} xs_n$$

where each $op_i \in \{tail, snoc, cons\}$.

Exercise 4.3

Suppose no invariants are imposed on *Deque* and *snoc* and *tail* are alternatively defined as *snoc'* and *tail'*.

- 1. Prove that the amortised complexity of each operation in a sequence of *snoc'* and *tail'* is still *O*(1).
- 2. Suppose that the sequence additionally contains operation *init'*. Determine whether the amortised complexity is still *O*(1).

Exercise 4.4

Consider the following alternative representation of Deque:

data *Deque'* a = Deque' *Int* [a] [a]

with an invariant n = length us + length sv for any Deque' n us sv. Define *cons* and + for this representation as follows:

 $\begin{array}{l} cons::a \rightarrow Deque' \ a \rightarrow Deque' \ a \\ cons \ u \ (Deque' \ n \ us \ sv) = Deque' \ (n+1) \ (u:us) \ sv \\ (+)::Deque' \ a \rightarrow Deque' \ a \rightarrow Deque' \ a \\ Deque' \ n \ us \ sv + Deque' \ n' \ us' \ sv' \\ | \ n < n' = Deque' \ (n+n') \ (us \ +reverse \ sv \ +us') \ sv' \\ | \ otherwise = Deque' \ (n+n') \ us \ (sv' \ +reverse \ us' \ +sv) \end{array}$

Give the worst-case complexity of *xs* ++ *ys* in terms of *length xs* and *length ys*.

```
data Deque a = Deque [a] [a]
instance List Deque where
  toList :: Deque a \rightarrow [a]
  toList (Deque xs sy) = xs + reverse sy
  fromList xs = Deque ys (reverse zs)
    where (ys, zs) = splitAt (length xs 'div' 2) xs
  tail :: Deque a \rightarrow Deque a
                      []) = error "tail: empty list"
  tail (Deque []
  tail (Deque []
                      sy) = empty
  tail (Deque [x]
                    sy) = fromList (reverse sy)
  tail (Deque (x:xs) sy) = Deque xs sy
  cons :: a \rightarrow Deque \ a \rightarrow Deque \ a
  cons x (Deque xs []) = Deque [x] xs
  cons x (Deque xs sy) = Deque (x : xs) sy
  snoc :: Deque a \to a \to Deque a
  snoc (Deque [] sv) x = Deque sv [x]
  snoc (Deque us sv) x = Deque us (x : sv)
```

```
snoc' :: Deque a \rightarrow a \rightarrow Deque a
snoc' (Deque us sv) v = Deque us (v:sv)
tail' :: Deque a \rightarrow Deque a
tail' (Deque [] []) = error "tail: empty list"
tail' (Deque [] sv) = Deque (tail (reverse sv)) []
tail' (Deque us sv) = Deque (tail us) sv
init' :: Deque a \rightarrow Deque a
init' (Deque [] []) = error "init: empty list"
init' (Deque us []) = Deque [] (tail (reverse us))
```

```
init' (Deque us []) = Deque [] (tail (recerse u
init' (Deque us sv) = Deque us (tail sv)
```

```
instance List Deque' where

toList :: Deque' a \rightarrow [a]

toList (Deque' n us sv) = us ++ reverse sv

fromList :: [a] \rightarrow Deque' a

fromList xs = Deque' n us sv

where n = length xs

(us, vs) = splitAt (n 'div' 2) xs

sv = reverse vs
```

2. Consider a sequence of operations creating and manipulating multiple deques

$$D_0 \stackrel{op_0}{\leadsto} D_1 \stackrel{op_1}{\leadsto} D_2 \stackrel{op_2}{\leadsto} \dots D_{n-1} \stackrel{op_{n-1}}{\leadsto} D_n$$

where each D_i is a *multiset* of deques and $D_0 = \emptyset$. Each op_i is only one of the following forms:

(a) $xs_i = empty$, and in this case

$$D_{i+1}=D_i\cup\{xs_i\},$$

(b) $xs_i = cons \ x \ xs_i$ where $xs_i \in D_i$, and in this case

$$D_{i+1} = (D_i \setminus \{xs_i\}) \cup \{xs_i\},$$

(c) $xs_i = xs_i + xs_k$ where $xs_i, xs_k \in D_i$ and $j \neq k$, and in this case

$$D_{i+1} = (D_i \setminus \{xs_i, xs_k\}) \cup \{xs_i\}.$$

For case (c) $xs_i = xs_j + xs_k$, if xs_{small} is the one in xs_j and xs_k with the smaller length, the elements in xs_{small} is said to be *merged into a larger deque*. Explain why every element can only be merged into a larger deque at most $\lceil \log_2 n \rceil$ times, where *n* is the length of the sequence of operations.

3. Prove that each operation has amortised complexity $O(\log_2 n)$ with the following size function:

$$S(D) = sum [length xs \times log_2 (n / (length xs)) | xs \leftarrow D, length xs > 0]$$

and explain the intuition of this size function. (The cost incurred by operations \cup and \setminus on the multiset does not need to be considered in the analysis.)

Exercise 4.5

Define *dec* :: *Binary* \rightarrow *Binary* that decrements a binary number discussed in the lecture and show that the amortised complexity of repeated applications of *dec* is O(1). Determine if the amortised complexity of each operation in a sequence op_i where $0 \le i < n$ and $op_i \in \{inc, dec\}$ is still O(1).

Exercise 4.6

Given is the data type *Tree* which is an instance of *List*. The tree $t :: Tree \ a$ is *balanced* iff t = Tip, $t = Leaf \ a$, or $t = Node \ n \ l \ r$ with balanced subtrees l and r such that *size* $l = size \ r$.

Show that (!!) :: *Tree* $a \rightarrow Int \rightarrow a$ takes $O(\log_2 n)$ time for balanced binary trees using a recurrence relation, where *n* is the number of elements in the tree.

type Binary = [Digit] **data** Digit = O | I $inc :: Binary \rightarrow Binary$ inc [] = [I] inc (O : bs) = I : bsinc (I : bs) = O : (inc bs)

```
data Tree a = Tip

| Leaf a

| Node Int (Tree a) (Tree a)

size (Tip) = 0

size (Leaf _) = 1

size (Node n _ - ) = n
```

Exercise 4.7

Consider the definition of *RAList a*.

- Letting *head* = (!!0), give the best-case and worst-case time complexities of *head xs* where *xs* :: *RAList a*.
- 2. Implement *tail* :: *RAList* $a \rightarrow RAList$ a such that the amortised complexity of a sequence of *tail* is O(1).
- Determine if the amortised complexity of a sequence of operations where each operation is either *tail* or *cons* is still O(1). (Hint: compare with *inc* and *dec* for binary numbers.)

 $\begin{array}{l} \textbf{newtype } RAList \; a = RAList \; [Tree \; a] \\ \textbf{instance } List \; RAList \; \textbf{where} \\ fromList :: \; [a] \rightarrow RAList \; a \\ fromList \; xs = foldr \; cons \; empty \; xs \\ toList :: \; RAList \; a \rightarrow [a] \\ toList \; (RAList \; ts) = (concat \circ map \; toList) \; ts \\ (!!) :: \; RAList \; a \rightarrow Int \rightarrow a \\ RAList \; (t:ts) !! \; k \\ & \mid k < size \; t = t !! \; k \\ & \mid otherwise = RAList \; ts !! \; (k - size \; t) \end{array}$