
COMP50001: Algorithm Design & Analysis
Sheet 4 (Week 5)

Exercise 4.1

data Deque a = Deque [a] [a]

instance List Deque where
toList :: Deque a→ [a]
toList (Deque xs sy) = xs ++ reverse sy

fromList xs = Deque ys (reverse zs)
where (ys, zs) = splitAt (length xs ‘div‘ 2) xs

tail :: Deque a→ Deque a
tail (Deque [] []) = error "tail: empty list"

tail (Deque [] sy) = empty
tail (Deque [x] sy) = fromList (reverse sy)
tail (Deque (x : xs) sy) = Deque xs sy

cons :: a→ Deque a→ Deque a
cons x (Deque xs []) = Deque [x] xs
cons x (Deque xs sy) = Deque (x : xs) sy

snoc :: Deque a→ a→ Deque a
snoc (Deque [] sv) x = Deque sv [x]
snoc (Deque us sv) x = Deque us (x : sv)

1. Give the time complexity of the following reverse in terms of the
length of a deque:

reverse :: Deque a→ Deque a
reverse = fromList ◦ reverse ◦ toList

2. Implement a reverse for deques that runs in O(1) time.

Exercise 4.2

Supposing xs0 :: Deque a is the empty deque, show that the amor-
tised complexity of each operation in the following sequence is
O(1):

xs0
op0⇝ xs1

op1⇝ xs2
op2⇝ . . .

opn−1
⇝ xsn

where each opi ∈ {tail, snoc, cons}.

Exercise 4.3

snoc′ :: Deque a→ a→ Deque a
snoc′ (Deque us sv) v = Deque us (v : sv)

tail′ :: Deque a→ Deque a
tail′ (Deque [] []) = error "tail: empty list"

tail′ (Deque [] sv) = Deque (tail (reverse sv)) []
tail′ (Deque us sv) = Deque (tail us) sv

init′ :: Deque a→ Deque a
init′ (Deque [] []) = error "init: empty list"

init′ (Deque us []) = Deque [] (tail (reverse us))
init′ (Deque us sv) = Deque us (tail sv)

Suppose no invariants are imposed on Deque and snoc and tail are
alternatively defined as snoc′ and tail′.

1. Prove that the amortised complexity of each operation in a se-
quence of snoc′ and tail′ is still O(1).

2. Suppose that the sequence additionally contains operation init′.
Determine whether the amortised complexity is still O(1).

Exercise 4.4

Consider the following alternative representation of Deque:

data Deque′ a = Deque′ Int [a] [a]

with an invariant n = length us + length sv for any Deque′ n us sv.
Define cons and ++ for this representation as follows:

instance List Deque′ where
toList :: Deque′ a→ [a]
toList (Deque′ n us sv) = us ++ reverse sv

fromList :: [a]→ Deque′ a
fromList xs = Deque′ n us sv

where n = length xs
(us, vs) = splitAt (n ‘div‘ 2) xs
sv = reverse vs

cons :: a→ Deque′ a→ Deque′ a
cons u (Deque′ n us sv) = Deque′ (n + 1) (u : us) sv

(++) :: Deque′ a→ Deque′ a→ Deque′ a
Deque′ n us sv ++ Deque′ n′ us′ sv′

| n < n′ = Deque′ (n + n′) (us ++ reverse sv ++ us′) sv′

| otherwise = Deque′ (n + n′) us (sv′ ++ reverse us′ ++ sv)

1. Give the worst-case complexity of xs ++ ys in terms of length xs
and length ys.

comp50001: algorithm design & analysis 2

2. Consider a sequence of operations creating and manipulating
multiple deques

D0
op0⇝ D1

op1⇝ D2
op2⇝ . . . Dn−1

opn−1
⇝ Dn

where each Di is a multiset of deques and D0 = ∅. Each opi is
only one of the following forms:

(a) xsi = empty, and in this case

Di+1 = Di ∪ {xsi},

(b) xsi = cons x xsj where xsj ∈ Di, and in this case

Di+1 = (Di \ {xsj}) ∪ {xsi},

(c) xsi = xsj ++ xsk where xsj, xsk ∈ Di and j ̸= k, and in this case

Di+1 = (Di \ {xsj, xsk}) ∪ {xsi}.

For case (c) xsi = xsj ++ xsk, if xssmall is the one in xsj and xsk with
the smaller length, the elements in xssmall is said to be merged into
a larger deque. Explain why every element can only be merged
into a larger deque at most ⌈log2 n⌉ times, where n is the length
of the sequence of operations.

3. Prove that each operation has amortised complexity O(log2 n)
with the following size function:

S(D) = sum [length xs× log2 (n / (length xs)) | xs← D, length xs> 0]

and explain the intuition of this size function. (The cost incurred
by operations ∪ and \ on the multiset does not need to be con-
sidered in the analysis.)

Exercise 4.5

type Binary = [Digit]
data Digit = O | I

inc :: Binary→ Binary
inc [] = [I]
inc (O : bs) = I : bs
inc (I : bs) = O : (inc bs)

Define dec :: Binary → Binary that decrements a binary number
discussed in the lecture and show that the amortised complexity
of repeated applications of dec is O(1). Determine if the amortised
complexity of each operation in a sequence opi where 0 ⩽ i < n and
opi ∈ {inc, dec} is still O(1).

Exercise 4.6

data Tree a = Tip
| Leaf a
| Node Int (Tree a) (Tree a)

size (Tip) = 0
size (Leaf) = 1
size (Node n) = n

Given is the data type Tree which is an instance of List. The tree
t :: Tree a is balanced iff t = Tip, t = Leaf a, or t = Node n l r with
balanced subtrees l and r such that size l = size r.

Show that (!!) :: Tree a → Int → a takes O(log2 n) time for
balanced binary trees using a recurrence relation, where n is the
number of elements in the tree.

comp50001: algorithm design & analysis 3

Exercise 4.7

Consider the definition of RAList a.
newtype RAList a = RAList [Tree a]

instance List RAList where

fromList :: [a]→ RAList a
fromList xs = foldr cons empty xs

toList :: RAList a→ [a]
toList (RAList ts) = (concat ◦map toList) ts

(!!) :: RAList a→ Int→ a
RAList (t : ts) !! k
| k < size t = t !! k
| otherwise = RAList ts !! (k− size t)

1. Letting head = (!!0), give the best-case and worst-case time
complexities of head xs where xs :: RAList a.

2. Implement tail :: RAList a → RAList a such that the amortised
complexity of a sequence of tail is O(1).

3. Determine if the amortised complexity of a sequence of oper-
ations where each operation is either tail or cons is still O(1).
(Hint: compare with inc and dec for binary numbers.)

