
COMP50001: Algorithm Design & Analysis
Sheet 4 (Week 5)

Exercise 4.1

data Deque a = Deque [a ] [a ]

instance List Deque where
toList :: Deque a→ [a ]
toList (Deque xs sy) = xs ++ reverse sy

fromList xs = Deque ys (reverse zs)
where (ys, zs) = splitAt (length xs ‘div‘ 2) xs

tail :: Deque a→ Deque a
tail (Deque [ ] [ ]) = error "tail: empty list"

tail (Deque [ ] sy) = empty
tail (Deque [x ] sy) = fromList (reverse sy)
tail (Deque (x : xs) sy) = Deque xs sy

cons :: a→ Deque a→ Deque a
cons x (Deque xs [ ]) = Deque [x ] xs
cons x (Deque xs sy) = Deque (x : xs) sy

snoc :: Deque a→ a→ Deque a
snoc (Deque [ ] sv) x = Deque sv [x ]
snoc (Deque us sv) x = Deque us (x : sv)

1. Give the time complexity of the following reverse in terms of the
length of a deque:

reverse :: Deque a→ Deque a
reverse = fromList ◦ reverse ◦ toList

2. Implement a reverse for deques that runs in O(1) time.

Exercise 4.2

Supposing xs0 :: Deque a is the empty deque, show that the amor-
tised complexity of each operation in the following sequence is
O(1):

xs0
op0⇝ xs1

op1⇝ xs2
op2⇝ . . .

opn−1
⇝ xsn

where each opi ∈ {tail, snoc, cons}.

Exercise 4.3

snoc′ :: Deque a→ a→ Deque a
snoc′ (Deque us sv) v = Deque us (v : sv)

tail′ :: Deque a→ Deque a
tail′ (Deque [ ] [ ]) = error "tail: empty list"

tail′ (Deque [ ] sv) = Deque (tail (reverse sv)) [ ]
tail′ (Deque us sv) = Deque (tail us) sv

init′ :: Deque a→ Deque a
init′ (Deque [ ] [ ]) = error "init: empty list"

init′ (Deque us [ ]) = Deque [ ] (tail (reverse us))
init′ (Deque us sv) = Deque us (tail sv)

Suppose no invariants are imposed on Deque and snoc and tail are
alternatively defined as snoc′ and tail′.

1. Prove that the amortised complexity of each operation in a se-
quence of snoc′ and tail′ is still O(1).

2. Suppose that the sequence additionally contains operation init′.
Determine whether the amortised complexity is still O(1).

Exercise 4.4

Consider the following alternative representation of Deque:

data Deque′ a = Deque′ Int [a ] [a ]

with an invariant n = length us + length sv for any Deque′ n us sv.
Define cons and ++ for this representation as follows:

instance List Deque′ where
toList :: Deque′ a→ [a ]
toList (Deque′ n us sv) = us ++ reverse sv

fromList :: [a ]→ Deque′ a
fromList xs = Deque′ n us sv

where n = length xs
(us, vs) = splitAt (n ‘div‘ 2) xs
sv = reverse vs

cons :: a→ Deque′ a→ Deque′ a
cons u (Deque′ n us sv) = Deque′ (n + 1) (u : us) sv

(++) :: Deque′ a→ Deque′ a→ Deque′ a
Deque′ n us sv ++ Deque′ n′ us′ sv′

| n < n′ = Deque′ (n + n′) (us ++ reverse sv ++ us′) sv′

| otherwise = Deque′ (n + n′) us (sv′ ++ reverse us′ ++ sv)

1. Give the worst-case complexity of xs ++ ys in terms of length xs
and length ys.



comp50001: algorithm design & analysis 2

2. Consider a sequence of operations creating and manipulating
multiple deques

D0
op0⇝ D1

op1⇝ D2
op2⇝ . . . Dn−1

opn−1
⇝ Dn

where each Di is a multiset of deques and D0 = ∅. Each opi is
only one of the following forms:

(a) xsi = empty, and in this case

Di+1 = Di ∪ {xsi},

(b) xsi = cons x xsj where xsj ∈ Di, and in this case

Di+1 = (Di \ {xsj}) ∪ {xsi},

(c) xsi = xsj ++ xsk where xsj, xsk ∈ Di and j ̸= k, and in this case

Di+1 = (Di \ {xsj, xsk}) ∪ {xsi}.

For case (c) xsi = xsj ++ xsk, if xssmall is the one in xsj and xsk with
the smaller length, the elements in xssmall is said to be merged into
a larger deque. Explain why every element can only be merged
into a larger deque at most ⌈log2 n⌉ times, where n is the length
of the sequence of operations.

3. Prove that each operation has amortised complexity O(log2 n)
with the following size function:

S(D) = sum [ length xs× log2 (n / (length xs)) | xs← D, length xs> 0 ]

and explain the intuition of this size function. (The cost incurred
by operations ∪ and \ on the multiset does not need to be con-
sidered in the analysis.)

Exercise 4.5

type Binary = [Digit ]
data Digit = O | I

inc :: Binary→ Binary
inc [ ] = [I ]
inc (O : bs) = I : bs
inc (I : bs) = O : (inc bs)

Define dec :: Binary → Binary that decrements a binary number
discussed in the lecture and show that the amortised complexity
of repeated applications of dec is O(1). Determine if the amortised
complexity of each operation in a sequence opi where 0 ⩽ i < n and
opi ∈ {inc, dec} is still O(1).

Exercise 4.6

data Tree a = Tip
| Leaf a
| Node Int (Tree a) (Tree a)

size (Tip) = 0
size (Leaf ) = 1
size (Node n ) = n

Given is the data type Tree which is an instance of List. The tree
t :: Tree a is balanced iff t = Tip, t = Leaf a, or t = Node n l r with
balanced subtrees l and r such that size l = size r.

Show that (!!) :: Tree a → Int → a takes O(log2 n) time for
balanced binary trees using a recurrence relation, where n is the
number of elements in the tree.



comp50001: algorithm design & analysis 3

Exercise 4.7

Consider the definition of RAList a.
newtype RAList a = RAList [Tree a ]

instance List RAList where

fromList :: [a ]→ RAList a
fromList xs = foldr cons empty xs

toList :: RAList a→ [a ]
toList (RAList ts) = (concat ◦map toList) ts

(!!) :: RAList a→ Int→ a
RAList (t : ts) !! k
| k < size t = t !! k
| otherwise = RAList ts !! (k− size t)

1. Letting head = (!!0), give the best-case and worst-case time
complexities of head xs where xs :: RAList a.

2. Implement tail :: RAList a → RAList a such that the amortised
complexity of a sequence of tail is O(1).

3. Determine if the amortised complexity of a sequence of oper-
ations where each operation is either tail or cons is still O(1).
(Hint: compare with inc and dec for binary numbers.)



comp50001: algorithm design & analysis 4

Solutions to the Exercises

Solution 4.1

1. The functions fromList, toList and reverse for [a ] all run in time
proportional to the length of the input, so this reverse for deques
also runs in O(length xs) time where xs :: Deque a is the input.

2. Because Deque is symmetric, reversing it can simply done by

reverse :: Deque a→ Deque a
reverse (Deque xs ys) = Deque ys xs

This clearly only needs O(1) time.

Solution 4.2

We set Aop(xs) = 2 for each op and use the same cost function C
and size function S as in the lecture:

Ccons(xs) = 1 Csnoc(xs) = 1

Ctail(Deque xs sy) = if length xs > 1 then 1 else length sy

S(Deque xs sy) = |length xs− length sy|

so it remains to show

Copi
(xsi) ⩽ Aopi

(xsi) + S(xsi)− S(xsi+1)

for opi ∈ {cons, snoc, tail}. The case for tail can be found in the
lecture notes. For opi = snoc, we have the definition

snoc :: Deque a→ a→ Deque a
snoc (Deque [ ] sv) x = Deque sv [x ]
snoc (Deque us sv) x = Deque us (x : sv)

and Csnoc(xs) = 1 and Asnoc(xs) = 2. If xsi matches the first pattern
Deque [ ] sv of snoc,

Asnoc(xsi) + S(xsi)− S(xsi+1)

= 2− S(Deque sv [x ]) + S(Deque [ ] sv)

= 2− |length sv− 1|+ |length sv|
⩾ {|a− b| ⩽ |a|+ |b|}

2− 1− |length sv|+ |length sv|
=2− 1 = 1 = Csnoc(xsi)

If xsi matches the second pattern Deque us sv of snoc,

Asnoc(xsi) + S(xsi)− S(xsi+1)

= 2− S(Deque us (x : sv)) + S(Deque us sv)

= 2− |length sv + 1− length us|+ |length sv− length us|
⩾ {|a + b| ⩽ |a|+ |b|}

2− 1− |length sv− length us|+ |length sv− length us|
= 2− 1 = 1 = Csnoc(xsi)

The case for cons is completely symmetric.



comp50001: algorithm design & analysis 5

Solution 4.3

1. The cost function in this situation is

Ctail′(Deque us sv) = if null us then length sv else 1 Csnoc′(xs) = 1

Define function Aop(xs) = 2 for any op and define size function
S(Deque us sv) = length sv. To show that Aop is the amortised cost
of each operation, it is sufficient to show

Cop(xs) ⩽ Aop(xs) + S(xs)− S(op xs)

for any op ∈ {tail′, snoc′} and xs :: Deque a.

(a) If op = tail′ and xs = Deque [ ] sv, then

Ctail′(xs) = length sv ⩽ 2 + length sv

= Atail′(xs) + S(xs)− S(tail′ xs)

(b) If op = tail′ and xs = Deque (u : us) sv, then

Ctail′(xs) = 1 ⩽ 2 + length sv− length sv

= Atail′(xs) + S(xs)− S(tail′ xs)

(c) If op = snoc′ and xs = Deque us sv, then

Csnoc′(xs) = 1 ⩽ 2 + length sv− (lengthsv + 1)

= Asnoc′(xs) + S(xs)− S(snoc′ xs)

2. No, the amortised complexity is no longer O(1) in this case.
Consider the following sequence of operations of length 4n:

snoc 1, snoc 2, . . . , snoc (2 ∗ n),

2n operations︷ ︸︸ ︷
tail′, init′, tail′, init′, . . .

After the first 2n snoc′ operations, the deque is Deque [ ] [2 ∗ Note that the tail and init discussed
in the lecture do not suffer from this
problem. Why?

n . . 1 ], and the (2n + k)-th operation (1 ⩽ k ⩽ 2n), which is either
a tail′ or an init′, triggers a complete reverse of cost 2n − k + 1.
Therefore the total cost of the sequence is 2n2 + 3n ∈ Θ(n2)

and the amortised complexity cannot be O(1), because it would
imply that the total cost is in O(n).

Solution 4.4

1. Because reverse us and us ++ sv take O(length us) time for any
us, sv :: [a ], xs ++ ys for xs, ys :: Deque′ a runs in time

O(length xs⊓ length ys)

2. When an element x in xssmall is merged into a larger deque,
it belongs to a deque at least twice as large as xssmall. Thus if
an element is merged into a larger deque more than ⌈log2 n⌉
times, it must be in a deque containing more than n elements,
which is impossible because there are only n operations in the
process, and each operation can create at most one element in
the collection of deques.



comp50001: algorithm design & analysis 6

3. The intuition is that because this version of xs ++ ys for deques
takes O(length xs ⊓ length ys) time, we can think that each ele-
ment in the smaller deque

xssmall = if length xs < length ys then xs else ys

is response for O(1) cost for this ++ operation. Furthermore, an
element pays this cost at most log2 n times because it can only
be merged into a larger deque at most log2 n times. As there can
only be at most n elements in the whole collection of deques, the
total cost of all operations is O(n log2 n) and amortised O(log2 n)
for each operation.

This argument can be formally proved by defining

Cempty(D) = 1 Ccons a xsj(D) = 1

Cxsj++xsk(D) = length xsj ⊓ length xsk

and

Aempty(D) = 1 Acons a xsj(D) = log2 n + 1

Cxsj++xsk(D) = log2 n

and for any set D of deques,

S(D) = sum [ length xs× log2 (n / (length xs)) | xs← D, length xs> 0 ]

It remains to show

Copi
(Di) ⩽ Aopi

(Di) + S(Di)− S(Di+1)

(1)
Logarithm satisfies the following
identities:

log(a× b) = log a + log b

log(
a
b
) = log a− log b

a log b = log(ba)

(a) If opi = empty, Equation 1 clearly holds because S(Di+1) =

S(Di).

(b) If opi = cons a xsj, denoting |xs| = length xs for any xs ::
Deque a, if xsj is not an empty deque,

Acons a xsj(Di) + S(Di)− S(Di+1)

= log2 n + 1 + |xsj| log2
n
|xsj|

− (|xsj|+ 1) log2
n

|xsj|+ 1

⩾ log2 n + 1− log2
n

|xsj|+ 1

= log2(|xsj|+ 1) + 1

⩾ 1 = Ccons a xsj(Di)

If xsj is an empty deque,

Acons a xsj(Di) + S(Di)− S(Di+1)

= log2 n + 1− log2 n ⩾ 1 = Ccons a xsj(Di)



comp50001: algorithm design & analysis 7

(c) If opi = xsj ++ xsk, assuming 0 < |xsj| < |xsk|,

Axsj++xsk(Di) + S(Di)− S(Di+1)

= log2 n + |xsj| log2
n
|xsj|

+ |xsk| log2
n
|xsk|

− (|xsj|+ |xsk|) log2
n

|xsj|+ |xsk|

= log2 n− |xsj| log2(|xsj|)− |xsk| log2(|xsk|) + (|xsj|+ |xsk|) log2(|xsj|+ |xsk|)
⩾ log2 n + |xsj|(log2(|xsj|+ |xsk|)− log2(|xsj|))
⩾ {|xsj| < |xsk|}

log2 n + |xsj|(log2(2|xsj|)− log2(|xsj|))
= log2 n + xsj ⩾ xsj = Cxsj++xsk(Di)

The case 0 < |xsk| ⩽ |xsj| is symmetric, and the case

min |xsj| |xsk| = 0

is also straightforward.

The intuition for the size function is that it measures how many
times each element can be merged into a larger deque in the rest
of the process.

Solution 4.5

inc :: Binary→ Binary
inc [ ] = [I ]
inc (O : bs) = I : bs
inc (I : bs) = O : (inc bs)

The function dec is symmetric to inc discussed in the lecture:

dec :: Binary→ Binary
dec [I ] = [ ]

dec (I : bs) = O : bs
dec (O : bs) = I : dec bs

1. Similarly to the analysis of inc in the lecture, we define

Cdec(bs) = t + 1 where t = length (takeWhile (≡ O) bs)

and for the amortised cost, we define

Adec(bs) = 2

The size function is then

Sdec(bs) = b where b = length (filter (≡ O) bs)

then for any bs :: Binary and bs′ = dec bs, the following holds:

Cdec(bs) ⩽ Adec(bs) + Sdec(bs)− Sdec(bs′)
⇐⇒
t + 1 ⩽ 2 + b− b′ where b′ = b− t + 1
⇐⇒
t + 1 ⩽ 2 + b− (b− t + 1)
⇐⇒
t + 1 ⩽ t + 1



comp50001: algorithm design & analysis 8

2. When both inc and dec are allowed in the sequence, the amor-
tised operation is no longer O(1). Consider bs = replicate n I,
which is the binary number contains n I’s and the sequence of
operations

inc, dec, inc, dec, inc, dec, . . .

In this case, every inc and dec takes time proportional to the
length of bs, so the amortised time complexity cannot be O(1).

Solution 4.6
Obviously it helps to have a smart
constructor for Node:

node :: Tree a→ Tree a→ Tree a
node lt rt = Node (size lt + size rt) lt rt

instance List Tree where
toList :: Tree a→ [a ]
toList (Tip) = [ ]
toList (Leaf x) = [x ]
toList (Node n lt rt) = toList lt ++ toList rt

fromList :: [a ]→ Tree a
fromList [ ] = Tip
fromList [x ] = Leaf x
fromList xs = node (fromList us) (fromList vs)

where (us, vs) = splitAt (length xs ‘div‘ 2) xs

Leaf x !! = x
Node n lt rt !! i
| i < n ‘div‘ 2 = lt !! i
| otherwise = rt !! (i− n ‘div‘ 2)

The time complexity of !! can be approximated by

T(n) =

1 n ⩽ 1

1 + T(n/2) otherwise

To solve the recurrence relation, we calculate

T(n) = 1 + T(
n
2
)

= 1 + 1 + T(
n
22 )

= 1 + 1 + 1 + T(
n
23 )

= . . .

= k + T(
n
2k )

Since n
2k ⩽ 1 iff k ⩾ log n, let k = ⌈(log2 n)⌉, and

T(n) = ⌈(log2 n)⌉+ 1 ∈ Θ(log2 n).

Solution 4.7

1. The best case is when the first element of xs :: RAList a is
Just (Leaf a), so (!!0) is done in O(1) time. The worst case is
when xs contains exactly 2k elements for some k, and thus every
tree except the last one in xs is Nothing. In this case, (!!0) takes
O(log2(length xs)) time.

2. The function tail for RAList a corresponds to dec for binary
numbers, and it can be defined as

tail :: RAList a→ RAList a
tail = snd ◦ split where

split :: RAList a→ (Tree a, RAList a)
split (RAList [t ]) = (t, RAList [ ])
split (RAList (Tip : ts)) = (t, RAList (t′ : ts′))

where (Node t t′, RAList ts′) = split (RAList ts)
split (RAList (t : ts)) = (t, RAList (Tip : ts))

It is easy to verify split (consT t ts) = (t, ts) for the consT dis-
cussed in the lecture. The amortised complexity of a sequence of
tail is O(1), which can be proved essentially in the same way as
Exercise 4.5.



comp50001: algorithm design & analysis 9

3. Similar to dec and inc of binary numbers, the amortised com-
plexity is no longer O(1) when tail and cons are used together. In
particular, when xs :: RAList a contains exactly 2k − 1 elements,
the following sequence

cons a, tail, cons a, tail, . . .

starting from xs costs Θ(log2(length xs)) time per operation.


