COMP50001: Algorithm Design & Analysis

Sheet 4 (Week 5)

Exercise 4.1

1. Give the time complexity of the following *reverse* in terms of the length of a deque:

reverse :: *Deque* $a \rightarrow$ *Deque* a*reverse* = *fromList* \circ *reverse* \circ *toList*

2. Implement a *reverse* for deques that runs in O(1) time.

Exercise 4.2

Supposing xs_0 :: *Deque a* is the empty deque, show that the amortised complexity of each operation in the following sequence is O(1):

$$xs_0 \xrightarrow{op_0} xs_1 \xrightarrow{op_1} xs_2 \xrightarrow{op_2} \dots \xrightarrow{op_{n-1}} xs_n$$

where each $op_i \in \{tail, snoc, cons\}$.

Exercise 4.3

Suppose no invariants are imposed on *Deque* and *snoc* and *tail* are alternatively defined as *snoc'* and *tail'*.

- 1. Prove that the amortised complexity of each operation in a sequence of *snoc'* and *tail'* is still *O*(1).
- 2. Suppose that the sequence additionally contains operation *init*'. Determine whether the amortised complexity is still *O*(1).

Exercise 4.4

Consider the following alternative representation of Deque:

data *Deque'* a = Deque' *Int* [a] [a]

with an invariant n = length us + length sv for any Deque' n us sv. Define *cons* and + for this representation as follows:

 $\begin{array}{l} cons :: a \rightarrow Deque' \ a \rightarrow Deque' \ a \\ cons \ u \ (Deque' \ n \ us \ sv) = Deque' \ (n+1) \ (u:us) \ sv \\ (+) :: Deque' \ a \rightarrow Deque' \ a \rightarrow Deque' \ a \\ Deque' \ n \ us \ sv + Deque' \ n' \ us' \ sv' \\ | \ n < n' = Deque' \ (n+n') \ (us \ +reverse \ sv \ +us') \ sv' \\ | \ otherwise = Deque' \ (n+n') \ us \ (sv' \ +reverse \ us' \ +sv) \end{array}$

Give the worst-case complexity of *xs* ++ *ys* in terms of *length xs* and *length ys*.

```
data Deque a = Deque [a] [a]
instance List Deque where
  toList :: Deque a \rightarrow [a]
  toList (Deque xs sy) = xs + reverse sy
  fromList xs = Deque ys (reverse zs)
    where (ys, zs) = splitAt (length xs 'div' 2) xs
  tail :: Deque a \rightarrow Deque a
                      []) = error "tail: empty list"
  tail (Deque []
  tail (Deque []
                      sy) = empty
  tail (Deque [x]
                    sy) = fromList (reverse sy)
  tail (Deque (x:xs) sy) = Deque xs sy
  cons :: a \rightarrow Deque \ a \rightarrow Deque \ a
  cons x (Deque xs []) = Deque [x] xs
  cons x (Deque xs sy) = Deque (x : xs) sy
  snoc :: Deque a \to a \to Deque a
  snoc (Deque [] sv) x = Deque sv [x]
  snoc (Deque us sv) x = Deque us (x : sv)
```

```
snoc' :: Deque a \rightarrow a \rightarrow Deque a
snoc' (Deque us sv) v = Deque us (v:sv)
tail' :: Deque a \rightarrow Deque a
tail' (Deque [] []) = error "tail: empty list"
tail' (Deque [] sv) = Deque (tail (reverse sv)) []
tail' (Deque us sv) = Deque (tail us) sv
init' :: Deque a \rightarrow Deque a
init' (Deque [] []) = error "init: empty list"
init' (Deque us []) = Deque [] (tail (reverse us))
```

```
init' (Deque us []) = Deque [] (tail (recerse us init' (Deque us sv) = Deque us (tail sv)
```

```
instance List Deque' where

toList :: Deque' a \rightarrow [a]

toList (Deque' n us sv) = us ++ reverse sv

fromList :: [a] \rightarrow Deque' a

fromList xs = Deque' n us sv

where n = length xs

(us, vs) = splitAt (n'div' 2) xs

sv = reverse vs
```

2. Consider a sequence of operations creating and manipulating multiple deques

$$D_0 \stackrel{op_0}{\leadsto} D_1 \stackrel{op_1}{\leadsto} D_2 \stackrel{op_2}{\leadsto} \dots D_{n-1} \stackrel{op_{n-1}}{\leadsto} D_n$$

where each D_i is a *multiset* of deques and $D_0 = \emptyset$. Each op_i is only one of the following forms:

(a) $xs_i = empty$, and in this case

$$D_{i+1}=D_i\cup\{xs_i\},$$

(b) $xs_i = cons \ x \ xs_i$ where $xs_i \in D_i$, and in this case

$$D_{i+1} = (D_i \setminus \{xs_i\}) \cup \{xs_i\},$$

(c) $xs_i = xs_i + xs_k$ where $xs_i, xs_k \in D_i$ and $j \neq k$, and in this case

$$D_{i+1} = (D_i \setminus \{xs_i, xs_k\}) \cup \{xs_i\}.$$

For case (c) $xs_i = xs_j + xs_k$, if xs_{small} is the one in xs_j and xs_k with the smaller length, the elements in xs_{small} is said to be *merged into a larger deque*. Explain why every element can only be merged into a larger deque at most $\lceil \log_2 n \rceil$ times, where *n* is the length of the sequence of operations.

3. Prove that each operation has amortised complexity $O(\log_2 n)$ with the following size function:

$$S(D) = sum [length xs \times log_2 (n / (length xs)) | xs \leftarrow D, length xs > 0]$$

and explain the intuition of this size function. (The cost incurred by operations \cup and \setminus on the multiset does not need to be considered in the analysis.)

Exercise 4.5

Define *dec* :: *Binary* \rightarrow *Binary* that decrements a binary number discussed in the lecture and show that the amortised complexity of repeated applications of *dec* is O(1). Determine if the amortised complexity of each operation in a sequence op_i where $0 \le i < n$ and $op_i \in \{inc, dec\}$ is still O(1).

Exercise 4.6

Given is the data type *Tree* which is an instance of *List*. The tree $t :: Tree \ a$ is *balanced* iff t = Tip, $t = Leaf \ a$, or $t = Node \ n \ l \ r$ with balanced subtrees l and r such that *size* $l = size \ r$.

Show that (!!) :: *Tree* $a \rightarrow Int \rightarrow a$ takes $O(\log_2 n)$ time for balanced binary trees using a recurrence relation, where *n* is the number of elements in the tree.

type Binary = [Digit] **data** Digit = O | I $inc :: Binary \rightarrow Binary$ inc [] = [I] inc (O : bs) = I : bsinc (I : bs) = O : (inc bs)

```
data Tree a = Tip

| Leaf a

| Node Int (Tree a) (Tree a)

size (Tip) = 0

size (Leaf _) = 1

size (Node n _ - ) = n
```

Exercise 4.7

Consider the definition of *RAList a*.

- Letting *head* = (!!0), give the best-case and worst-case time complexities of *head xs* where *xs* :: *RAList a*.
- 2. Implement *tail* :: *RAList* $a \rightarrow RAList$ a such that the amortised complexity of a sequence of *tail* is O(1).
- Determine if the amortised complexity of a sequence of operations where each operation is either *tail* or *cons* is still O(1). (Hint: compare with *inc* and *dec* for binary numbers.)

 $\begin{array}{l} \textbf{newtype } RAList \; a = RAList \; [Tree \; a] \\ \textbf{instance } List \; RAList \; \textbf{where} \\ fromList :: \; [a] \rightarrow RAList \; a \\ fromList \; xs = foldr \; cons \; empty \; xs \\ toList :: \; RAList \; a \rightarrow [a] \\ toList \; (RAList \; ts) = (concat \circ map \; toList) \; ts \\ (!!) :: \; RAList \; a \rightarrow Int \rightarrow a \\ RAList \; (t:ts) !! \; k \\ & \mid k < size \; t \; = t !! \; k \\ & \mid otherwise = RAList \; ts !! \; (k - size \; t) \end{array}$

Solutions to the Exercises

Solution 4.1

- The functions *fromList*, *toList* and *reverse* for [*a*] all run in time proportional to the length of the input, so this *reverse* for deques also runs in O(*length xs*) time where *xs* :: Deque *a* is the input.
- 2. Because Deque is symmetric, reversing it can simply done by

reverse :: Deque $a \rightarrow$ Deque a*reverse* (Deque xs ys) = Deque ys xs

This clearly only needs O(1) time.

Solution 4.2

We set $A_{op}(xs) = 2$ for each *op* and use the same cost function *C* and size function *S* as in the lecture:

$$C_{cons}(xs) = 1$$
 $C_{snoc}(xs) = 1$
 $C_{tail}(Deque \ xs \ sy) = \mathbf{if} \ length \ xs > 1 \ \mathbf{then} \ 1 \ \mathbf{else} \ length \ sy$
 $S(Deque \ xs \ sy) = |length \ xs - length \ sy|$

so it remains to show

$$C_{op_i}(xs_i) \leqslant A_{op_i}(xs_i) + S(xs_i) - S(xs_{i+1})$$

for $op_i \in \{cons, snoc, tail\}$. The case for *tail* can be found in the lecture notes. For $op_i = snoc$, we have the definition

snoc :: Deque $a \rightarrow a \rightarrow$ Deque asnoc (Deque [] sv) x = Deque sv [x]snoc (Deque us sv) x = Deque us (x:sv)

and $C_{snoc}(xs) = 1$ and $A_{snoc}(xs) = 2$. If xs_i matches the first pattern *Deque* [] *sv* of *snoc*,

$$\begin{aligned} A_{snoc}(xs_i) + S(xs_i) - S(xs_{i+1}) \\ &= 2 - S(Deque \ sv \ [x]) + S(Deque \ [] \ sv) \\ &= 2 - |length \ sv - 1| + |length \ sv| \\ &\geqslant \quad \{|a - b| \leqslant |a| + |b|\} \\ &2 - 1 - |length \ sv| + |length \ sv| \\ &= 2 - 1 = 1 = C_{snoc}(xs_i) \end{aligned}$$

If *xs_i* matches the second pattern *Deque us sv* of *snoc*,

$$\begin{aligned} A_{snoc}(xs_i) + S(xs_i) - S(xs_{i+1}) \\ &= 2 - S(Deque \ us \ (x:sv)) + S(Deque \ us \ sv) \\ &= 2 - |length \ sv + 1 - length \ us| + |length \ sv - length \ us| \\ &\geqslant \quad \{|a+b| \leqslant |a| + |b|\} \\ &2 - 1 - |length \ sv - length \ us| + |length \ sv - length \ us| \\ &= 2 - 1 = 1 = C_{snoc}(xs_i) \end{aligned}$$

The case for *cons* is completely symmetric.

Solution 4.3

1. The cost function in this situation is

$$C_{tail'}(Deque us sv) = if null us then length sv else 1 $C_{snoc'}(xs) = 1$$$

Define function $A_{op}(xs) = 2$ for any *op* and define size function $S(Deque \ us \ sv) = length \ sv$. To show that A_{op} is the amortised cost of each operation, it is sufficient to show

$$C_{op}(xs) \leq A_{op}(xs) + S(xs) - S(op xs)$$

for any $op \in \{tail', snoc'\}$ and xs :: Deque a.

(a) If op = tail' and xs = Deque [] sv, then

$$C_{tail'}(xs) = length \ sv \leq 2 + length \ sv$$
$$= A_{tail'}(xs) + S(xs) - S(tail' \ xs)$$

(b) If op = tail' and xs = Deque(u:us) sv, then

$$C_{tail'}(xs) = 1 \leq 2 + length \ sv - length \ sv$$
$$= A_{tail'}(xs) + S(xs) - S(tail' \ xs)$$

(c) If op = snoc' and xs = Deque us sv, then

$$C_{snoc'}(xs) = 1 \leq 2 + length \ sv - (lengthsv + 1)$$
$$= A_{snoc'}(xs) + S(xs) - S(snoc' \ xs)$$

No, the amortised complexity is no longer O(1) in this case.
 Consider the following sequence of operations of length 4n:

snoc 1, snoc 2, ..., snoc
$$(2 * n)$$
, tail', init', tail', init', ...

After the first $2n \ snoc'$ operations, the deque is Deque [] [2 * $n \dots 1$], and the (2n + k)-th operation $(1 \le k \le 2n)$, which is either a *tail'* or an *init'*, triggers a complete *reverse* of cost 2n - k + 1. Therefore the total cost of the sequence is $2n^2 + 3n \in \Theta(n^2)$ and the amortised complexity cannot be O(1), because it would imply that the total cost is in O(n).

Solution 4.4

Because *reverse us* and *us* ++ *sv* take O(*length us*) time for any *us*, *sv* :: [*a*], *xs* ++ *ys* for *xs*, *ys* :: Deque' *a* runs in time

 $O(length xs \sqcap length ys)$

2. When an element x in xs_{small} is merged into a larger deque, it belongs to a deque at least *twice* as large as xs_{small}. Thus if an element is merged into a larger deque more than [log₂ n] times, it must be in a deque containing more than n elements, which is impossible because there are only n operations in the process, and each operation can create at most one element in the collection of deques.

Note that the *tail* and *init* discussed in the lecture do not suffer from this problem. Why? 3. The intuition is that because this version of xs + ys for deques takes $O(length \ xs \sqcap length \ ys)$ time, we can think that each element in the smaller deque

$$xs_{small} = \mathbf{if} \ length \ xs < length \ ys$$
 then xs else ys

is response for O(1) cost for this $+\!\!+$ operation. Furthermore, an element pays this cost at most $\log_2 n$ times because it can only be merged into a larger deque at most $\log_2 n$ times. As there can only be at most n elements in the whole collection of deques, the total cost of all operations is $O(n \log_2 n)$ and amortised $O(\log_2 n)$ for each operation.

This argument can be formally proved by defining

$$C_{empty}(D) = 1$$
 $C_{cons\ a\ xs_j}(D) = 1$
 $C_{xs_j + xs_k}(D) = length\ xs_j \sqcap length\ xs_k$

and

$$A_{empty}(D) = 1$$
 $A_{cons\ a\ xs_j}(D) = \log_2 n + 1$
 $C_{xs_j + xs_k}(D) = \log_2 n$

and for any set *D* of deques,

$$S(D) = sum [length xs \times log_2 (n / (length xs)) | xs \leftarrow D, length xs > 0]$$

It remains to show

$$C_{op_i}(D_i) \leqslant A_{op_i}(D_i) + S(D_i) - S(D_{i+1})$$
(1)

- (a) If $op_i = empty$, Equation 1 clearly holds because $S(D_{i+1}) = S(D_i)$.
- (b) If op_i = cons a xs_j, denoting |xs| = length xs for any xs :: Deque a, if xs_i is not an empty deque,

$$\begin{aligned} A_{cons\ a\ xs_j}(D_i) + S(D_i) - S(D_{i+1}) \\ &= \log_2 n + 1 + |xs_j| \log_2 \frac{n}{|xs_j|} - (|xs_j| + 1) \log_2 \frac{n}{|xs_j| + 1} \\ &\ge \log_2 n + 1 - \log_2 \frac{n}{|xs_j| + 1} \\ &= \log_2(|xs_j| + 1) + 1 \\ &\ge 1 = C_{cons\ a\ xs_j}(D_i) \end{aligned}$$

If xs_i is an empty deque,

$$A_{cons\ a\ xs_j}(D_i) + S(D_i) - S(D_{i+1})$$

= $\log_2 n + 1 - \log_2 n \ge 1 = C_{cons\ a\ xs_j}(D_i)$

Logarithm satisfies the following identities:

$$\log(a \times b) = \log a + \log b$$
$$\log(\frac{a}{b}) = \log a - \log b$$
$$a \log b = \log(b^{a})$$

(c) If $op_i = xs_i + xs_k$, assuming $0 < |xs_i| < |xs_k|$,

$$\begin{split} &A_{xs_j + xs_k}(D_i) + S(D_i) - S(D_{i+1}) \\ &= \log_2 n + |xs_j| \log_2 \frac{n}{|xs_j|} + |xs_k| \log_2 \frac{n}{|xs_k|} - (|xs_j| + |xs_k|) \log_2 \frac{n}{|xs_j| + |xs_k|} \\ &= \log_2 n - |xs_j| \log_2(|xs_j|) - |xs_k| \log_2(|xs_k|) + (|xs_j| + |xs_k|) \log_2(|xs_j| + |xs_k|) \\ &\ge \log_2 n + |xs_j| (\log_2(|xs_j| + |xs_k|) - \log_2(|xs_j|)) \\ &\ge ||xs_j| < |xs_k|| \\ &\log_2 n + |xs_j| (\log_2(2|xs_j|) - \log_2(|xs_j|)) \\ &= \log_2 n + xs_j \ge xs_j = C_{xs_j + xs_k}(D_i) \end{split}$$

The case $0 < |xs_k| \leq |xs_j|$ is symmetric, and the case

min $|xs_i| |xs_k| = 0$

is also straightforward.

The intuition for the size function is that it measures how many times each element can be merged into a larger deque in the rest of the process.

Solution 4.5

The function *dec* is symmetric to *inc* discussed in the lecture:

 $dec :: Binary \rightarrow Binary$ dec [I] = []dec (I:bs) = O:bsdec (O:bs) = I: dec bs

1. Similarly to the analysis of *inc* in the lecture, we define

 $C_{dec}(bs) = t + 1$ where t = length (takeWhile ($\equiv O$) bs)

and for the amortised cost, we define

 $A_{dec}(bs) = 2$

The size function is then

 $S_{dec}(bs) = b$ where b = length (filter ($\equiv O$) bs)

then for any bs :: Binary and bs' = dec bs, the following holds:

$$C_{dec}(bs) \leqslant A_{dec}(bs) + S_{dec}(bs) - S_{dec}(bs')$$

$$\iff$$

$$t + 1 \leqslant 2 + b - b' \text{ where } b' = b - t + 1$$

$$\iff$$

$$t + 1 \leqslant 2 + b - (b - t + 1)$$

$$\iff$$

$$t + 1 \leqslant t + 1$$

 $inc :: Binary \rightarrow Binary$ inc [] = [I]inc (O:bs) = I : bsinc (I:bs) = O: (inc bs)

2. When both *inc* and *dec* are allowed in the sequence, the amortised operation is no longer O(1). Consider $bs = replicate \ n \ I$, which is the binary number contains $n \ I$'s and the sequence of operations

In this case, every *inc* and *dec* takes time proportional to the length of *bs*, so the amortised time complexity cannot be O(1).

Solution 4.6

The time complexity of !! can be approximated by

$$T(n) = \begin{cases} 1 & n \leq 1\\ 1 + T(n/2) & \text{otherwise} \end{cases}$$

To solve the recurrence relation, we calculate

$$T(n) = 1 + T(\frac{n}{2})$$

= 1 + 1 + T($\frac{n}{2^2}$)
= 1 + 1 + 1 + T($\frac{n}{2^3}$)
= ...
= k + T($\frac{n}{2^k}$)

Since $\frac{n}{2k} \leq 1$ iff $k \geq \log n$, let $k = \lceil (\log_2 n) \rceil$, and

$$T(n) = \lceil (\log_2 n) \rceil + 1 \in \Theta(\log_2 n).$$

Solution 4.7

- The best case is when the first element of xs :: RAList a is Just (Leaf a), so (!!0) is done in O(1) time. The worst case is when xs contains exactly 2^k elements for some k, and thus every tree except the last one in xs is Nothing. In this case, (!!0) takes O(log2(length xs)) time.
- 2. The function *tail* for *RAList a* corresponds to *dec* for binary numbers, and it can be defined as

```
tail :: RAList a \rightarrow RAList a

tail = snd \circ split \text{ where}

split :: RAList a \rightarrow (Tree a, RAList a)

split (RAList [t]) = (t, RAList [])

split (RAList (Tip : ts)) = (t, RAList (t' : ts'))

where (Node _t t', RAList ts') = split (RAList ts)

split (RAList (t : ts)) = (t, RAList (Tip : ts))
```

It is easy to verify *split* $(cons_T t ts) = (t, ts)$ for the $cons_T$ discussed in the lecture. The amortised complexity of a sequence of *tail* is O(1), which can be proved essentially in the same way as Exercise 4.5.

Obviously it helps to have a smart constructor for *Node*:

node :: Tree $a \rightarrow$ Tree $a \rightarrow$ Tree anode lt rt = Node (size lt + size rt) lt rt

instance List Tree where

 $toList :: Tree \ a \to [a]$ toList (Tip) = [] toList (Leaf x) = [x] $toList (Node n \ lt \ rt) = toList \ lt \ +t \ toList \ rt$ $fromList :: [a] \to Tree \ a$ fromList [] = Tip $fromList [x] = Leaf \ x$ $fromList \ xs = node \ (fromList \ us) \ (fromList \ vs)$ $where \ (us, vs) = splitAt \ (length \ xs' \ div' \ 2) \ xs$ $Leaf \ x \qquad !! \ - x$ $Node \ n \ lt \ rt \ !! \ i$ $| \ i < n' \ div' \ 2 = lt \ !! \ i$ $| \ otherwise = rt \ !! \ (i - n' \ div' \ 2)$

3. Similar to *dec* and *inc* of binary numbers, the amortised complexity is no longer O(1) when *tail* and *cons* are used together. In particular, when *xs* :: *RAList a* contains exactly $2^k - 1$ elements, the following sequence

cons a, tail, cons a, tail, ...

starting from *xs* costs $\Theta(\log_2(length xs))$ time per operation.