
COMP50001: Algorithm Design & Analysis
Sheet 3 (Week 4)

Exercise 3.1

qsort uses ++ on lists to build up the output list; reimplement it
to use DLists. Compare the running time (both asymptotic and
absolute) of the new qsort to the old.

qsort :: [Int]→ [Int]
qsort [] = []
qsort [x] = [x]
qsort (x : xs) = qsort us ++ [x] ++ qsort vs

where
(us, vs) = partition (⩽ x) xsExercise 3.2

Identify and prove that one of the base cases in the given definition
of qsort is unnecessary.

Exercise 3.3

Recall that quick sort is O(n2) on sorted lists. With this in mind,
often we employ more sophisticated methods of choosing a pivot:
the median-of-three approach, for instance, picks the first, middle,
and last elements in the input list and chooses the median of those
three as the pivot. Calculate the time complexity of quick sort on
sorted lists when median-of-three is used. Describe a pathological
case, if one exists, where quick sort is O(n2) even when median-of-
three is used.

Exercise 3.4

Consider the following implementation of merge sort on nonempty
lists (equivalent to the implementation given in lectures):

merge :: [Int]→ [Int]→ [Int]
merge [] ys = ys
merge xs [] = xs
merge xxs@(x : xs) yys@(y : ys)
| x ⩽ y = x : merge xs yys
| otherwise = y : merge xxs ysmsort :: [Int]→ [Int]

msort = foldt merge ◦map single

foldt :: (a→ a→ a)→ [a]→ a
foldt [x] = x
foldt f xs = f (foldt f ys) (foldt f zs)

where
(ys, zs) = splitAt (length xs ‘div‘ 2) xs

Rewrite foldt to be bottom-up (rather than top-down): it should
merge adjacent elements in the input list repeatedly until only one
is left, and then return it.

Exercise 3.5

Calculate the time complexity of msort if the following definition of
foldt had been used:

foldt f [x] = x
foldt f (x : xs) = f x (foldt f xs)

State the name of the sorting algorithm implemented by msort if
this definition of foldt is used.

comp50001: algorithm design & analysis 2

Exercise 3.6

Recall that we defined minimum = head ◦ isort. Calculate the (worst-
case) running time of minimum = head ◦ qsort (ADWH, p111, Exer-
cise 5.5) and minimum = head ◦msort.

Exercise 3.7

(ADWH, p112, Exercise 5.7) The number of comparisons T(m, n)
required by merge to merge two lists of lengths m and n in the worst
case satisfies

T(0, n) = 0

T(m,0) = 0

T(m,n) = 1 + T(m− 1, n) max T(m, n− 1)

Prove that T(m, n) ⩽ m + n.

Exercise 3.8

lcs finds the longest common subsequence of two lists of Ints.

lcs :: [Int]→ [Int]→ [Int]
lcs xxs@(x : xs) yys@(y : ys)
| x ≡ y = x : lcs xs ys
| length us ⩽ length vs = vs
| otherwise = us

where
us = lcs xxs ys
vs = lcs xs yys

lcs = []

lcs [1, 2, 3] [1, 3] ≡ [1, 3]
lcs [1, 2, 3] [4, 5, 6] ≡ []

lcs [1, 2, 3] [3, 2, 1] ≡ [3]

Reimplement lcs to use memoisation.

Exercise 3.9

Given a list of integers xs, and some index i into xs, we define
splitDiff xs i to be the sum of all the integers up to i minus the
sum of those from i onwards.

splitDiff :: [Int]→ Int→ Int
splitDiff xs i = sum lhs− sum rhs

where
(lhs, rhs) = splitAt i xsWrite an algorithm which, given some xs, finds an i which max-

imises splitDiff xs i. Your algorithm should run in linear time. The
following is a quadratic-time solution:

maximise :: [Int]→ Int
maximise xs =

maximumBy (comparing (splitDiff xs)) [0 . . length xs− 1]

Exercise 3.10

Consider the following implementation of fib which uses the fixer
helper function:

fixer :: ((Int→ a)→ (Int→ a))→ Int→ a
fixer f = f (fixer f)

fib :: Int→ Int
fib = fixer go

where
go r 0 = 0
go r 1 = 1
go r n = r (n− 1) + r (n− 2)

Reimplement fixer such that the resulting fib will be memoised.

comp50001: algorithm design & analysis 3

Solutions to the Exercises

Solution 3.1

Using DList directly, we get the following:

qsort :: [Int]→ [Int]
qsort = toList ◦ go

where
go :: [Int]→ DList Int
go [] = empty
go (x : xs) = go us ++ single x ++ go vs

where
(us, vs) = partition (⩽ x) xs

If we replaced all of the class methods with their implementations,
we would arrive at the following function:

qsort :: [Int]→ [Int]
qsort xs = go xs []

where
go [] = id
go (x : xs) = go us ◦ (x:) ◦ go vs

where
(us, vs) = partition (⩽ x) xs

And if we eta-expand the go helper, we arrive at the following:

qsort :: [Int]→ [Int]
qsort xs = go xs []

where
go [] ks = ks
go (x : xs) ks = go us (x : go vs ks)

where
(us, vs) = partition (⩽ x) xs

This final function reveals that the DList optimisation is analogous
to adding an accumulator to the recursive function, similarly to
how the naive O(n2) reverse on lists can be improved to O(n) with
an accumulator.

With regards to the running time, the line of interest is the fol-
lowing:

qsort (x : xs) = qsort us ++ [x] ++ qsort vs

In the list-based algorithm, we would need to pay for the traversal
of the underlined portion, since ++ is linear in its first argument.
In the DList-based solution, on the other hand, ++ is constant-time,
so we don’t have to pay the extra cost. There is an extra linear-time
step in the DList solution (the toList at the end), but we can skip this
step by using the final version of qsort above with the accumulator,
meaning that overall the new qsort is strictly better than the old in
terms of absolute time.

comp50001: algorithm design & analysis 4

The asympotics, however, do not change: this is because qsort us
already costs O(n log(n)), so the extra linear traversal incurred by
++ doesn’t make a difference.

Solution 3.2

The second clause (qsort [x] = [x]) is unnecessary. This means that
we can write qsort as follows:

qsort′ :: [Int]→ [Int]
qsort′ [] = []

qsort′ (x : xs) = qsort′ us ++ [x] ++ qsort′ vs
where
(us, vs) = partition (⩽ x) xs

To prove that the clause is unnecessary we need only show that,
on the input that matches that clause, qsort′ and qsort are equal.

qsort′ [x]

≡ { Evaluate qsort′ [x] }

qsort′ us ++ [x] ++ qsort′ vs
where
(us, vs) = partition (⩽ x) []

≡ { Evaluate partition (⩽ x) [] }

qsort′ us ++ [x] ++ qsort′ vs
where
(us, vs) = ([], [])

≡ { Variable substitution for us and vs }

qsort′ [] ++ [x] ++ qsort′ []

≡ { Evaluate qsort′ [] }

[] ++ [x] ++ []

≡ { ++ left and right identities }

[x]

≡ { Definition of qsort }

qsort [x]

Solution 3.3

Quick sort with median-of-three pivot selection is O(n log(n)) on
sorted lists.

The key to generating a pathological case for median-of-three is
to try and make it so that the pivot chosen is always either larger or
smaller than most other elements in the list, so the split is skewed
one way or the other. As such, we should place the two smallest
(or largest) elements in the first and middle positions in the list. A
function which would produce this pathological case (from a sorted
list with distinct elements) is the following:

comp50001: algorithm design & analysis 5

pathologise :: [Int]→ [Int]
pathologise xxs@(x1 : x2 : xs) = [x1] ++ lhs ++ [x2] ++ rhs

where
n = length xxs
ys = pathologise xs
(lhs, rhs) = splitAt (n ‘div‘ 2− 1) ys

pathologise xs = xs

Running the median-of-three version of qsort on pathologise [x1, . . . , xn] The pathologise function assumes
that the middle element is picked by
xs !! (length xs ‘div‘ 2).

gives rises to

qsortm3 (pathologise [x1, x2, . . . , xn])

≡ qsortm3 ([x1] ++ lhs ++ [x2] ++ rhs)

≡ {-The index of x2 is exactly n ‘div‘ 2 and any elements -}
{-in rhs is greater than x2. -}

qsortm3 [x1] ++ [x2] ++ qsortm3 (lhs ++ rhs)

≡ qsortm3 [x1] ++ [x2] ++ qsortm3 (pathologise [x3, . . . , xn])

≡ . . .

and it indicates that qsortm3 only shrinks the size of the input by 2

for each step.

Solution 3.4

There are many different implementations of a bottom-up foldt.
Here is a simple implementation:

foldt :: (a→ a→ a)→ [a]→ a
foldt f [x] = x
foldt f xs = foldt f (pairMap f xs)

where
pairMap f (x1 : x2 : xs) = f x1 x2 : pairMap f xs
pairMap xs = xs

It’s important that the implementation of foldt builds a balanced
tree in order to maintain the asymptotic complexity of msort. For
instance, for the given foldt, we have:

foldt (+) [1, 2, 3, 4, 5, 6, 7, 8] =

+

+

+

1 2

+

3 4

+

+

5 6

+

7 8

In the cases where a perfect tree is not possible, it balances the tree
as follows:

comp50001: algorithm design & analysis 6

foldt (+) [1, 2, 3, 4, 5, 6] =

+

+

+

1 2

+

3 4

+

5 6

However, even though the second tree here is unbalanced, the
depth of the tree is always of order O(log(n)), so the asymptotic
complexity of msort is O(n log(n)).

Solution 3.5

This version of msort is actually insertion sort, and so has a time
complexity of O(n2).

Solution 3.6

In a strict evaluation context, both of these implementations for
minimum have the same running time as their corresponding sort
function. So head ◦ qsort ∈ O(n2) and head ◦msort ∈ O(n log n).

In a lazy context the question is more complicated. First, the
worst-case time for head ◦ qsort is still O(n2): to see this, consider
the pathological case of a list sorted in reverse, where we always
choose a pivot larger than all the other elements. In this case, the
call to partition will always partition the list into an empty list and
a list of all the elements smaller than the pivot. This means that
we will have n recursive calls, with each call performing the linear-
time partition on its input list, giving us an O(n2) function overall.
Crucially, no cons-cell is constructed until we perform all of these
recursive calls; as a result, laziness can’t save us from the quadratic
cost.

Interestingly, in the case of a list sorted in ascending order
minimum = head ◦ qsort is actually O(n), despite the fact that this is
a pathological O(n2) case for qsort.

To deduce the complexity of head ◦ msort we will first look at
merge.

merge :: [Int]→ [Int]→ [Int]
merge [] ys = ys
merge xs [] = xs
merge xxs@(x : xs) yys@(y : ys)
| x ⩽ y = x : merge xs yys
| otherwise = y : merge xxs ys

We know that we are eventually going to call head on the returned
list, so we can actually ignore the second argument to the (:) con-
structor here (since head doesn’t look at it). This changes the func-
tion to the following:

comp50001: algorithm design & analysis 7

merge [] ys = ys
merge xs [] = xs
merge (x: _) (y: _)
| x ⩽ y = [x]
| otherwise = [y]

Now, since we’re not calling merge on the tail of either of the lists,
we know that it will never be called on an empty list, so we can
discard the first two clauses:

merge (x: _) (y: _)
| x ⩽ y = [x]
| otherwise = [y]

Let’s now sub in the implementation of msort into the definition of
minimum:

head ◦msort = head ◦ foldt merge ◦map single

We’re allowed to remove map single
and head without worrying about
how they affect the complexity be-
cause map single is linear and head
is constant-time, and we know that
minimum is at best linear-time, so nei-
ther function will make the asymptotic
complexity worse.

We can see that the map single is simply converting every element
to a singleton list, and the head is converting from a singleton list, so
we can actually remove these transformations:

merge x y
| x ⩽ y = x
| otherwise = y

head ◦msort = foldt merge

At this point it’s clear that merge is just an incorrectly-named min:

head ◦msort = foldt min

This final expression will give us our complexity: foldt f xs calls f
length xs− 1 times, giving foldt min linear complexity overall.

Solution 3.7

To prove that T(m, n) ⩽ m + n, we proceed by case analysis on m
and n. In the case that m = 0, the property holds, as T(0, n) = 0,
and 0 ⩽ m + 0. Similarly, when n = 0, T(m, 0) = 0 and 0 ⩽ 0 + n. In
the recursive case, we must prove

1 + T(m− 1, n) max T(m, n− 1) ⩽ m + n

By induction we know that

T(m− 1, n) ⩽ (m− 1) + n

and
T(m, n− 1) ⩽ m + (n− 1)

so
T(m− 1, n) max T(m, n− 1) ⩽ m + n− 1

By adding one to both sides we get

1 + T(m− 1, n) max T(m, n− 1) ⩽ m + n

Which means the property holds in all cases.

comp50001: algorithm design & analysis 8

Solution 3.8

The solution uses the tabulate function:

tabulate :: Ix i⇒ (i, i)→ (i→ a)→ Array i a
tabulate (u, v) f = array (u, v) [(i, f i) | i← range (u, v)]

The first step is to transform lcs so that the lists stay constant and
to use indices to track how far through the list progress is being
made. Here the indices i and j represent the values at the head of
the lists being considered. The empty cases are being considered
when i ≡ m or j ≡ n.

lcs′ :: [Int]→ [Int]→ Int→ Int→ [Int]
lcs′ xs ys i j
| i ≡ m ∨ j ≡ n = []

| x ≡ y = x : lcs′ xs ys (i + 1) (j + 1)
| length us ⩽ length vs = vs
| otherwise = us

where
us = lcs′ xs ys i (j + 1)
vs = lcs′ xs ys (i + 1) j

x = xs !! i
y = ys !! j
m = length xs
n = length ys

From here, the transformation is routine: the memo function is es-
sentially lcs′, but with recursive calls replaced with a lookup in the
table. The solution is found in the (0, 0) entry.

lcs′′ :: [Int]→ [Int]→ [Int]
lcs′′ xs ys = table ! (0, 0)

where
table = tabulate ((0, 0), (m, n)) memo

memo (i, j)
| i ≡ m ∨ j ≡ n = []

| x ≡ y = x : table ! (i + 1, j + 1)
| length us ⩽ length vs = vs
| otherwise = us

where
x = xs !! i
y = ys !! j
us = table ! (i, j + 1)
vs = table ! (i + 1, j)

m = length xs
n = length ys

The complexity is then further improved by replacing the calls to
length us and length vs with a lookup, rather than recalculation.
This involves modifying the table to store a pair rather than a single

comp50001: algorithm design & analysis 9

value, where one component of the pair is the list, and the other is
the length of that list. In addition, the lists xs and ys can be used to
create array version axs and ays so that looking up values there also
takes constant time.

With all this completed, the complexity is easy enough to see:
given lists of size m and n each entry in the table takes constant
time to compute, and there are m× n entries in the table. Thus, this
is an O(m× n) algorithm.

Solution 3.9

As in question 3.8, the first step is to redefine the function in ques-
tion to be more amenable to memoisation. This means replacing its
parameters with values that can be keys into some memo table. The
function we want to optimise here is actually splitDiff : the quadratic
complexity comes from calling it a linear amount of times, so if we
can build a memo table in O(n) time splitDiff will become O(1),
and the whole function will be linear.

maximise :: [Int]→ Int
maximise xs =

maximumBy (comparing splitDiff ′) [0 . . length xs− 1]
where

splitDiff ′ 0 = −sum xs
splitDiff ′ i = splitDiff ′ (i− 1) + (xs !! (i− 1)) ∗ 2

splitDiff ′ here has two cases: the first (when i = 0) corresponds to
splitDiff xs 0:

splitDiff xs 0

≡ { Definition of splitDiff }

sum lhs− sum rhs
where
(lhs, rhs) = splitAt 0 xs

≡ { Evaluate splitAt }

sum lhs− sum rhs
where
(lhs, rhs) = ([], xs)

≡ { Sub in for lhs and rhs }

sum []− sum xs

≡ { Evaluate sum [] }

− sum xs

≡ { Definition of splitDiff ′ }

splitDiff ′ 0

The second case (the recurrence relation) is a little more complex.
We need to build the result of splitDiff ′ i from splitDiff ′ (i− 1). To
do that we will use the following identity (where xi means xs !! i):

comp50001: algorithm design & analysis 10

splitDiff ′ i = sum [..., xi−3, xi−2, xi−1]− sum [xi, xi+1, xi+2, ...]

From which we can derive the following:

splitDiff ′ (i− 1) = sum [..., xi−4, xi−3, xi−2]− sum [xi−1, xi, xi+1, ...]

From these we can derive the recurrence relation we need:

splitDiff ′ i = splitDiff ′ (i− 1) + xi−1 ∗ 2

With this form of splitDiff ′ the memoisation is much easier to
figure out (we also will make an array from the input list to give us
quicker lookups):

maximise :: [Int]→ Int
maximise xs =

maximumBy (comparing (table!)) [0 . . length xs− 1]
where

table = tabulate (0, length xs− 1) memo

memo 0 = −sum xs
memo i = table ! (i− 1) + axs ! (i− 1) ∗ 2

axs = listArray (0, length xs− 1) xs

Finally, there is actually a far simpler function which accom-
plishes the same task as the two above, also in linear time. Techni-
cally it does so using a form of memoisation, although it’s probably
a little more difficult to see. Its definition is as follows:

maximise :: [Int]→ Int
maximise xs = fst (maximumBy (comparing snd) (zip [0 . .] sums))

where
sums = init (zipWith (−) (scanl (+) 0 xs) (scanr (+) 0 xs))

Solution 3.10

Here is a version that uses the tabulate function:

fixer :: ((Int→ a)→ (Int→ a))→ Int→ a
fixer f n = table ! n

where
table = tabulate (0, n) (f memo)
memo i = table ! i

And here is one which uses an infinite list:

fixer f = memo
where

table = map (f memo) [0 . .]
memo i = table !! i

These functions have quite different performance characteristics:
the former has the advantage of avoiding linear-time lookups in

comp50001: algorithm design & analysis 11

singly-linked lists, meaning that it is much faster in the general
case. The latter has the (small) advantage of being able to store
results between calls, meaning that fib 3 and fib 5 in different parts
of the program would use the same memo table.

The latter function is able to store results because it first creates
an unbounded table for results: laziness ensures that this table is
only computed as needed. The former function needs to allocate
the space for an array ahead of time, and as a result needs to know
a bound on the table; it uses the input to fib to do this.

There are data structures which achieve something of the best of
both worlds: they can be unbounded and computed on-demand,
but with reasonably efficient lookups. In the case of integer keys,
we could have used a trie instead of a list to store results. This
would have given logarithmic lookups, while also allowing on-
demand growth and allocation. In some scenarios this second prop-
erty is quite important: we don’t always know how big our memo
table will need to be before we start.

