
COMP50001: Algorithm Design & Analysis
Sheet 2 (Week 3)

Exercise 2.1

Find a binary operation (⋄) :: (a → a) → (a → a) → (a → a) and an
element ϵ :: a → a such that the set of functions of type a → a with ⋄
and ϵ forms a monoid.

Exercise 2.2

Given any two monoids (M1, ⋄1, ϵ1) and (M2, ⋄2, ϵ2), a monoid homo-
morphism from M1 to M2 is a function h :: M1 → M2 such that

h (x ⋄1 y) = (h x) ⋄2(h y)

h ϵ1 = ϵ2

Give three monoid homomorphisms from ([Int],++, []) to (Int,+, 0).

Exercise 2.3

Calculate the asymptotic time complexity of concatl xs below in
terms of n and m where xs contains n lists, each containing m ele-
ments.

concatl :: [[a]] → [a]
concatl = foldl (++) []

Exercise 2.4

The List type class is shown in Figure 2.4. Complete the specifica-
tion of the List type class by providing a default implementation for
all the operations other than fromList and toList.

class List list where
fromList :: [a] → list a
toList :: list a → [a]
normalize :: list a → list a

empty :: list a
single :: a → list a
cons :: a → list a → list a
snoc :: list a → a → list a

head :: list a → a
tail :: list a → list a
init :: list a → list a
last :: list a → a

isEmpty :: list a → Bool
isSingle :: list a → Bool
length :: list a → Int
(++) :: list a → list a → list a
(!!) :: list a → Int → a

Figure 1: List class definition

Exercise 2.5

Implement an instance of List using standard lists [a] without using
functions from the Prelude other than the list constructors, and give
the time complexities of each operation.

Exercise 2.6

Implement an instance of List using the following Tree type:

data Tree a = Tip | Leaf a | Fork (Tree a) (Tree a)

Ensure that the worst case complexity of (++) is O(1). What is the
worst case complexity of head?

comp50001: algorithm design & analysis 2

Exercise 2.7

Define an instance of List using DList below, and give the complexi-
ties of all operations in terms of the length of the input list (assume
all DList arguments to functions are built using the operations in
List).

newtype DList a = DList ([a] → [a])

Hint: fromList xs = DList (xs++). Consider carefully whether the
time complexity is affected by strict or lazy evaluation.

Exercise 2.8

Explain why the following implementation of fromList is undesir-
able in the last exercise:

fromList xs = DList (++xs)

Exercise 2.9

Prove or disprove the following assertions for the DList instance of
List from Exercise (2.7).

1. fromList (toList dxs) = dxs for any dxs :: DList a.

2. toList (fromList xs) = xs for any xs :: [a].

comp50001: algorithm design & analysis 3

Solutions to the Exercises

Solution 2.1

Define (⋄) f g x = f (g x), i.e., (⋄) is function composition, and
ϵ x = x, i.e., ϵ is the identity function id. For any x :: a,

(ϵ ⋄ f) x = ϵ (f x) = f x = f (ϵ x) = (f ⋄ ϵ) x

so ϵ ⋄ f = f ⋄ ϵ. Similarly, for any x :: a,

(f ⋄(g ⋄ h)) x = f (g (h x)) = ((f ⋄ g) ⋄ h) x

so functions of a → a with ⋄ and ϵ forms a monoid.

Solution 2.2

1. The constant function mapping all lists xs to 0 is a monoid ho-
momorphism.

2. The function length :: [Int] → Int is a monoid homomorphism.

3. The function sum :: [Int] → Int defined by

sum [] = 0
sum (x : xs) = x + sum xs

is a monoid homomorphism.

Solution 2.3

We define a ternary recurrence relation T(k, n, m) to compute the
asymptotic complexity of foldl (++) ys xss where ys :: [a] contains
k elements and xss :: [[a]] contains n lists of m a-elements. Because
foldl (++) ys [] = ys,

T(k, 0, m) = 1.

Also we have foldl (++) ys (xs : xss) = foldl (++) (ys ++ xs) xss.
In strict time analysis, argument ys ++ xs must be computed before
recursive call to foldl. Since the time complexity of computing ys ++
xs is O(length ys),

T (k, n, m) = k + T (k + m, n − 1, m).

Then the time complexity of concatl xss = foldl (++) [] xss is

T(0, n, m)

= 0 + T(m, n − 1, m)

= 0 + m + T(2m, n − 2, m)

= 0 + m + 2m + T(3m, n − 3, m)

= . . .

= (
n−1

∑
k=0

k ∗ m) + T(nm, n − n, m)

∈ Θ(n2m)

comp50001: algorithm design & analysis 4

Solution 2.4

It is not desirable to provide a default implementation of fromList
and toList, since serve as the bridge between the abstract datatype
[a] and the concrete type list a.

class List list where
fromList :: [a] → list a
toList :: list a → [a]
normalize :: list a → list a
normalize xs = fromList (toList xs)

empty :: list a
empty = fromList []

single :: a → list a
single x = fromList [x]

cons :: a → list a → list a
cons x xs = fromList (x : toList xs)

snoc :: list a → a → list a
snoc xs x = fromList (toList xs ++ [x])

head :: list a → a
head xs = head (toList xs)

tail :: list a → list a
tail xs = fromList (tail (toList xs))

init :: list a → list a
init xs = fromList (init (toList xs))

last :: list a → a
last xs = last (toList xs)

isEmpty :: list a → Bool
isEmpty xs = isEmpty (toList xs)

isSingle :: list a → Bool
isSingle xs = isSingle (toList xs)

length :: list a → Int
length xs = length (toList xs)

(++) :: list a → list a → list a
xs ++ ys = fromList (toList xs ++ toList ys)

(!!) :: list a → Int → a
xs !! i = toList xs !! i

comp50001: algorithm design & analysis 5

Solution 2.5

instance List [] where
-- fromList xs: O(1)

fromList = id

-- toList xs: O(1)
toList = id

-- normalize xs: O(1)
normalize = id

-- empty: O(1)
empty :: [a]
empty = []

-- single x: O(1)
single :: a → [a]
single x = [x]

-- cons x xs: O(1)
cons :: a → [a] → [a]
cons = (:)

-- snoc xs x: O(n) where n = length xs
snoc :: [a] → a → [a]
snoc xs x = xs ++ [x]

-- head xs: O(1)
head :: [a] → a
head [] = error "head: empty list"

head (x : xs) = x

-- tail xs: O(1)
tail :: [a] → [a]
tail [] = error "tail: empty list"

tail (x : xs) = xs

-- init xs: O(n) where n = length xs
init :: [a] → [a]
init [] = error "init: empty list"

init [x] = []

init (x : xs) = x : init xs

-- last xs: O(n) where n = length xs
last :: [a] → a
last [] = error "last: empty list"

last [x] = x
last (x : xs) = last xs

-- isEmpty xs: O(1)
isEmpty :: [a] → Bool
isEmpty [] = True
isEmpty = False

-- isSingle xs: O(1)
isSingle :: [a] → Bool
isSingle [x] = True
isSingle = False

-- length xs: O(n) where n = length xs
length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

-- xs ++ ys: O(n) where n = length xs
(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : xs ++ ys

-- xs !! i: O(n) where n = length xs
(!!) :: [a] → Int → a
[] !! n = error "(!!): empty list"

(x : xs) !! 0 = x
(x : xs) !! n = xs !! (n − 1)

Solution 2.6

This is a naive (but complete!) solution that makes no attempt to
balance the trees:

instance List Tree where
fromList [] = Tip

comp50001: algorithm design & analysis 6

fromList (x : xs) = Fork (Leaf x) (fromList xs)

toList Tip = []

toList (Leaf x) = [x]
toList (Fork txs tys) = toList txs ++ toList tys

txs ++ tys = Fork txs tys

All the other definitions use the default implementation.

Solution 2.7
Is empty = DList (λxs → []) correct?

instance List DList where
-- toList: O(n)

toList :: DList a → [a]
toList (DList dxs) = dxs []

-- fromList: O(1)
fromList :: [a] → DList a
fromList xs = DList (xs++)

-- (++): O(1)
(++) :: DList a → DList a → DList a
DList dxs ++ DList fys = DList (dxs ◦ fys)

-- empty: O(1)
empty :: DList a
empty = DList (λxs → xs)

-- single x: O(1)
single :: a → DList a
single x = DList (x:)

-- cons x xs: O(1)
cons :: a → DList a → DList a
cons x (DList dxs) = DList ((x:) ◦ dxs)

-- snoc xs x: O(1)
snoc :: DList a → a → DList a
snoc (DList dxs) x = DList (dxs ◦ (x:))

-- head xs: O(n), where n = length xs
head :: DList a → a
head xs = head (toList xs)

-- tail xs: O(n), where n = length xs
tail :: DList a → DList a
tail xs = fromList (tail (toList xs))

-- init xs: O(n), where n = length xs
init :: DList a → DList a
init xs = fromList (init (toList xs))

-- last xs: O(n), where n = length xs
last :: DList a → a
last xs = last (toList xs)

-- isEmpty xs: O(n), where n = length xs
isEmpty :: DList a → Bool
isEmpty xs = isEmpty (toList xs)

-- isSingle xs: O(n), where n = length xs
isSingle :: DList a → Bool
isSingle xs = isSingle (toList xs)

-- length xs: O(n), where n = length xs
length :: DList a → Int
length xs = length (toList xs)

-- xs !! i: O(n), where n = length xs
(!!) :: DList a → Int → a
xs !! n = toList xs !! n

In the above implementation, any operation returning some
DList f satisfies that f = (xs++) for some xs :: [a], or f = (x:) for

comp50001: algorithm design & analysis 7

some x :: a, or f is the composite of two functions inside DList. Since
(xs++) is equal to (and has the same asymptotic time complexity as)

(x0:) ◦ (x1:) . . . ◦ (xn:)

for xs = [x0, x1, . . . , xn]. It follows that for any DList f :: DList a
built from the interface of List, f is equal to (and have the same time
complexity as)

(y0:) ◦ (y1:) . . . ◦ (ym:)

for a set of elements y0, y1, . . . , ym :: a. Thus in a lazy semantics,
toList (DList f) = f [] takes constant time and furthermore head, tail,
isEmpty, and isSingle take constant time too.

Solution 2.8

With this definition, we can construct

d = fromList xs1 ++ (fromList xs2 ++ (. . . fromList xsn))

= DList((++xs1) ◦ (++xs2) ◦ . . . ◦ (++xsn))

and evaluting toList d = concatl [xs1, xs2, . . . , xsn]. In Exercise (2.3),
we have demonstrated that it takes O(n2m) time to evaluate it with
strict semantics, as opposed to O(nm) where m is the maximum
number of elements in xsi.

Solution 2.9

1. Letting dxs = DList reverse,

fromList (toList dxs) = fromList (reverse []) = fromList [] = DList (λxs → []++ xs)

which is different from dxs, so this property does not hold.

2. for any list xs :: [a],

toList (fromList xs) = toList (DList (xs++)) = xs ++ [] = xs

so this property holds.

