
COMP50001: Algorithm Design & Analysis
Sheet 1 (Week 2)

Exercise 1.1

Given the following function concatenating two lists,

(++) :: [Int] → [Int] → [Int]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

with a recurrence relation T(n, m), approximate the time it takes to
compute xs ++ ys for any list xs of length n and ys of length m.

Exercise 1.2

Consider an alternative strict time analysis function T′, defined to
be the same as T, except that T′ is refined to have cost 1 instead 0
on variables, constants and primitive functions, i.e.

T′(x) = 1

T′(k) = 1

T′(f) x1 · · · xn = 1

Compute T′(length xs) in terms of T′(length (tail xs)).

Exercise 1.3

Compute the strict running time T(length (insert x xs)) using the
composition rule.

Exercise 1.4

Pattern matching can be added to the expression language e as
follows:

e ::= · · · | case e of [] → e; (x : xs) → e

Give an appropriate definition of T(case e1 of [] → e2; (x : xs) → e3)

for strict time analysis.

Exercise 1.5

(ADWH, p39, Exercise 2.3) Prove formally that (n + 1)2 ∈ Θ(n2) by
exhibiting the necessary constants.

Exercise 1.6

(ADWH, p39, Exercise 2.5) Justify whether each of the following is
true or false:

1. 2n2 + 3n ∈ Θ(n2)

2. 2n2 + 3n ∈ O(n3)

comp50001: algorithm design & analysis 2

3. n log n ∈ O(n
√

n)

4. n +
√

n ∈ O(
√

n log n)

5. 2log n ∈ O(n)

Exercise 1.7

Show formally that o(g(n)) is a proper subset of O(g(n)) for any
function g using their definitions.

Exercise 1.8

Explain why there is no definition θ(g(n)) that corresponds to
Θ(g(n)) even though there is o(g(n)) corresponding to O(g(n))
and ω(g(n)) corresponding to Ω(g(n)).

