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Foreword
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Algorithm Design & Analysis course at Imperial College London.



[git] •

1
Introduction

It is not only the violin that shapes the
violinist, we are all shaped by the tools we
train ourselves to use, and in this respect
programming languages have a devious
influence: they shape our thinking habits.

E. Dijkstra, 2001

An algorithm is a method for computing a desired result. At the
heart of algorithms is the aim to produce some systematic, even
mathematical, means of producing a solution to a given problem.
The word algorithm itself comes from the name of a 9th Century

There is something fishy about al-
gorithms. The word algorithm is
from the French algorithme, from
the old French algorisme, from the
Medieval Latin algorismus, from the
Arabic al-Khwārizmı̄, from the Persian
Xwârazm, which means cooked fish
(from khwar and razm). However,
Xwârazm might alternatively be trans-
lated kh(w)ar, “low” and zam “land”,
since it is the lowest region in Persia.
Now, the word beneath comes from
be- and neath, where neath means low.
This is also the same word as in the
Netherlands, which is also, therefore,
another word for algorithm. Finally,
in the Netherlands is home to many
dykes, which are trenches which people
dig. In Germanic languages, the suffix
-stra means dweller, so these people
could be called dykestras. As it hap-
pens Edsger Dijkstra wrote a famous
algorithm that we will study.

mathematician from Persia, Muh. ammad ibn Mūsā al-Khwārizmı̄
who was immortalised by his work on algebra,where amongst
other things he showed how to solve quadratic equations by com-
pleting the square.

This course is about the design, analysis, and implementation
of algorithms. The goal, broadly, will be to understand and recog-
nise a range of algorithmic techniques in order to solve problems.
Unlike in most presentations the algorithms themselves will not be
presented in pseudo-code, but rather, as implementations that can
be executed.

To this end, the code will be in Haskell, a functional language
that excels at expressing datastructures and recursive functions in a
succinct and clear manner. Although Haskell will be the vehicle to
describe the ideas in this course, the lessons learnt about algorithm
design and analysis are equally applicable in other languages.

1.1 Fundamentals First

Some fundamentals are required before the study of more ad-
vanced algorithms can be approached. This section introduces
the simple example of sorting as a means of fixing notation and
refreshing some basics that should already be familiar.

Given an integer x and sorted list of integers ys, the insertion
problem is to produce the list containing the elements x : ys in sorted
order. One algorithm would be to simply sort this list, that is,
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sort (x : xs), but this seems to be overkill, in that it does not exploit
the fact that xs is already sorted.

A more sensible approach is to traverse the list ys element by
element until the correct location for x has been found. Then, x can
be inserted into the right place and the algorithm is complete. This
idea is implemented in the insert function, defined as follows:

insert :: Int→ [Int ]→ [Int ]
insert x [ ] = [x ]
insert x (y : ys)
| x ⩽ y = x : y : ys
| otherwise = y : insert x ys

In the base case, the list is empty, so all that is needed is the list
containing the element x. In the recursive case, y : ys is a sorted list.
If x ⩽ y, then x belongs at the beginning of this list. Otherwise, the
element y must come first, followed by the result of inserting x into
the remaining list ys.

Understanding the computational complexity of the insert func-
tion involves counting the number of call steps that are required to
process the input. A call step is counted each time an application
of a non-primitive function is reduced. For example, here is a trace
of how many call steps are required to evaluate insert 4 [1, 3, 6, 7 ],
assuming that each comparison (⩽) is primitive: Note that [1, 2 ] is syntactic sugar for

1 : 2 : [ ], and there is no reduction
between these terms.insert 4 [1, 3, 6, 7, 9 ]

⇝ { definition of insert }
1 : insert 4 [3, 6, 7, 9 ]
⇝ { definition of insert }

1 : 3 : insert 4 [6, 7, 9 ]
⇝ { definition of insert }

1 : 3 : 4 : 6 : [7, 9 ]

This took 3 call steps, each using the definition of insert. An accurate step counter of equation
reductions isn’t that useful in practice:
the binary produced by a modern
compiler that corresponds to this
code will not usually perform such
reductions.

Accurately counting steps by evaluation is a tedious task, and it
is often enough to work instead with a more convenient recurrence
relation that abstracts and approximates this count by focusing on
how the size of input data affects the number of reductions. Solving
the recurrence relation will give a closed-form solution that is easier
to compute and understand.

The recurrence relation for the evaluation of insert x xs in the
worst case will be given by Tinsert(n), where the measure of input
size is the length of the list xs, given by n = length xs. Defining
this relation is achieved by looking at the cost of each clause in the
definition of insert. In the base case, xs = [ ] and so n = 0, only one
reduction is required. In the recursive case n > 0, and at worst insert
is invoked again with a list of size n− 1.

Tinsert 0 = 1
Tinsert n = 1 + Tinsert (n− 1)

This recursion equation is then solved to give a closed-form so-
lution, where recursion in the recurrence relation is removed. A
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strategy for discovering the closed-form solution is to simply unroll
the definition and look for patterns.

Tinsert n = 1 + Tinsert (n− 1)
= 1 + 1 + Tinsert (n− 2)
= ...
= 1 + 1 + ... + Tinsert (n− n)
= 1 + n

Thus it takes approximately n steps to compute insert x xs, where
n = length xs, a fact that is captured by saying that insert has
O(n) complexity. This is an example of asymptotic notation, which
formalises the idea that it is useful to be able to provide an approx-
imate measure of how long it takes for an algorithm to complete
given some input size.

Here is another problem. Given a list of values, the sorting prob-
lem must produce the list containing those values in ascending
order. One way to solve this problem is to use the insertion sort al-
gorithm, which constructs a sorted list by taking each element in
the input and inserting it into an initially empty sorted list.

isort :: [Int ]→ [Int ]
isort [ ] = [ ]

isort (x : xs) = insert x (isort xs)

Structural induction on the input list leads to a natural algorithm. If
the list is empty then it is already sorted. Otherwise, an element x
is inserted into the result of sorting xs using the insert function.

Here is a small example of this function evaluating fully. With some luck, this might the last
time an evaluation this long is written.

isort [3, 1, 2 ]
⇝ { definition of isort }

insert 3 (isort [1, 2 ])
⇝ { definition of isort }

insert 3 (insert 1 (isort [2 ])
⇝ { definition of isort }

insert 3 (insert 1 (insert 2 (isort [ ]))
⇝ { definition of isort }

insert 3 (insert 1 (insert 2 [ ])

⇝ { definition of insert }
insert 3 (insert 1 [2 ])
⇝ { definition of insert }

insert 3 [1, 2 ]
⇝ { definition of insert }

1 : insert 3 [2 ]
⇝ { definition of insert }

1 : 2 : insert 3 [ ]

⇝ { definition of insert }
1 : 2 : [3 ]

This took 9 evaluation steps.
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The recurrence equation for the worst case time complexity of
sort xs is given by Tisort(n), where n = length xs, to be the following:

Tsort 0 = 1
Tsort n = 1 + Tinsert (n− 1) + Tsort (n− 1)

This can be solved exactly by recognising that this is the equation The story goes that Gauss solved this
problem in 1786 when he was about
nine years old, by coming up with this
equation when his teacher set it as
an exercise. The classic source of this
was written for his memorial by von
Waltershausen [1856].

for triangular numbers, the sum 1 + 2 + . . . + n that Gauss famously
solved as a child.

Tsort n = n×(n+1)
2 + 1 + n

= (n+1)×(n+2)
2

As values of n grow, this complexity is dominated by the n2 term
in the equation, which is to say that in the worst case it has O(n2)

behaviour.
These two examples have illustrated the key elements that will

be repeated throughout this course: the statement of a problem,
the design and implementation of an algorithm, and the analysis of
time complexity. The remainder of these notes will focus on elab-
orating on these key elements and demonstrating key algorithmic
principles that can be used to solve problems and analyse solutions.
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2
Evaluation

Perfection is achieved, not when there is
nothing left to add, but when there is
nothing left to take away.

Antoine de Saint-Exupéry, 1939

Terre des Hommes

A critical part of understanding algorithms is the ability to es-
timate the time it takes for an algorithm to provide a solution.
Estimating this time requires a model of how much time it takes
for instructions to be executed. This is known as the cost model.
The exact cost model that it is used must of course depend on how
instructions are executed in the first place. This might be the num-
ber of assignments that are made, the number of times values are
compared with one another, the number of function calls that are
made, and so on: the model can be adapted to suit particular needs.
A very general cost model counts the number of reductions that
are made, and that in turn requires an understanding of reduction
strategies.

Given an expression there can are a number of different evalu-
ation strategies that lead to a reduction. For instance, consider the
evaluation of the following definition of a minimum function:

minimum :: [Int ]→ Int
minimum = head ◦ sortInt

How many steps are required to evaluate minimum [3, 1, 2 ]? The
previous count showed that sort [1, 2, 3 ] takes 9 steps, so one answer
is that an additional step is required for the head function, thus 10
steps. However, there is a potential shortcut: after only 7 steps the
value 1 is at the head of the list: so perhaps it could be extracted at
that point instead. In short, the exact order of evaluation of certain
expressions will change the number of steps required.

This chapter introduces a simple expression language and the
main evaluation strategies that can be employed. Then, a means
of carefully counting the number of reductions in a strict setting is
discussed.
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2.0.1 Expressions

The strategy to giving an overall cost to an algorithm is to give a
series of rules that will assign a cost to a function by allocating a
cost to its constituent parts. While Haskell is a language with many
different syntactic features, at its core it can be simplified into a
much smaller language.

To a first approximation, expressions, e in a simple programming
language can be broken down into terms given by the following
grammar:

e ::= x -- variables
| k -- constants
| f e1 . . en -- applications
| if e then e1 else e2 -- conditionals

A function f in this language is assume to be defined by the form
f x1 ... xn = e. Infix operations are written as x + y instead of
(+) x y. Primitive constants such as True, False, 0, 1, 2, are available,
as are stand operations on them such as ¬, ⩽, (+), and (×). List
constants and operations are also primitive, such as [ ], (:), null, head
and tail.

While this does not cover all the syntactic constructs available in
a fully featured language like Haskell, this covers a wide range of
programs that can be broken down into these components.

2.0.2 Evaluation Order

There are two main forms of evaluation: applicative evaluation and
normal evaluation. As stated before, different evaluation strategies
may take different times to compute an expression.

• Applicative order works on the leftmost innermost reducible ex-
pression when evaluating. This amounts to evaluating argu-
ments to a function before evaluating the function itself.

• Normal order works on the leftmost outermost reducible expres-
sion when evaluating. This amounts to evaluating the function
before evaluating its arguments.

If they terminate, both of these strategies produce values in normal
form. If a normal form for an expression exists, then normal order
will reduce to that normal form. Applicative order, on the other
hand, may not find the normal form since it may not terminate, but
if it does terminate then the result will agree with normal order. These properties of reduction strate-

gies are given by the Church-Rosser
Theorem, which is not explored fur-
ther in this course. The classic result is
by Church and Rosser [1936].

In a strict setting, evaluation occurs using applicative order. In a
lazy setting, evaluation occurs using normal order. Furthermore, in
functional languages no evaluation occurs in the body of a lambda
abstraction, so all values that are produced are only weakly nor-
malised.

To keep the analysis of algorithms simple, the standard assump-
tion is that strict evaluation is used on arguments that are already
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in normal form. At times this assumption may be changed or ques-
tioned, but it serves as a good baseline for most of the algorithms
that will be encountered in this course. Even in an imperative language like C

with eager evaluation strategies, not all
statements are evaluated. Conditional
expressions such as if statements and
short-circuit operators only evaluate
the necessary branches.

2.1 Counting Carefully

A proper account of how long it takes for a function to run is
achieved by imposing an appropriate cost model. In a strict set-
ting, it is possible to count the number of steps accurately. A simple
model is to count the total number of times a non-primitive func-
tion is reduced.

To do this, the cost of evaluating a function f which takes n ar-
guments will be given by the function T(f ) which also takes n ar-
guments, such that T(f ) x1 ... xn is the time it takes to evaluate
f x1 ... xn.

Now consider a given non-primitive function f that takes ar-
guments a1, ..., an to produce an expression e. In other words, a
definition of the form:

f a1 a2 ... an = e

If the arguments a1, ..., an are already evaluated, then the time time
it takes to compute this function is T(f ), which can be expressed by:

T(f ) a1 a2 ... an = T(e) + 1

This means that the time it takes to compute the application of the
function f to its arguments is the time it takes to evaluate the body
e, plus some constant measure of time.

Now the goal is to define the function T(e) for the different ex-
pressions e.

Primitive A primitive function f that takes n arguments costs:

T(f ) x1 ... xn = 0

Variable A variable x costs:

T(x) = 0

Application An application f e1 ... en costs:

T(f e1 ... en) = T(f ) e1 ... en + T(e1) + ... + T(en)

Conditional A conditional expression costs:

T( if p then e1 else e2) = T(p) + if p then T(e1) else T(e2)

With all these costs defined, applying the cost model thus pro-
ceeds in two phases. First, expressions are translated from ordinary
Haskell to a smaller fragment that is easier to analyse, and once this
is done the costs are calculated.

This was an involved process even for
the simple case of strict evaluation.
Wadler [1988] discusses an initial
model for lazy evaluation, which
involves first performing strictness
analysis on a program. Complexity
analysis in lazy functional languages
was investigated more thoroughly by
Sands [1989, 1990], which resulted
in a calculi for the time analysis of
functional programs.

While this method of calculating costs is certainly possible, it is
not practical in the sense that the process is too involved for even
the simplest of algorithms. It does serve, however, to aid intuition
when trying to understand the cost of a computation.
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3
Asymptotics

All we have to decide is what to do with the
time that is given us.

J. R. R. Tolkien, 1954

The Fellowship of the Ring

Hardy [1910, p24] introduced L-
functions as a short name for the
logarithmico-exponential functions. In
earlier work [Hardy, 1905, p3] he
used the term elementary functions but
the term now loosely encompasses
a larger family of functions that also
includes trigonometric functions and
their inverses. The work on elementary
functions began with the treatment by
Liouville [1833] of algebraic functions
which are similar but do not include
functions made up of logarithms or
exponentials.

Giving an exact measure of how many steps it will take for a
computation to terminate is not always an easy or even a neces-
sary task. The exact cost of an arbitrary function could involve a
recurrence equation that is every bit as intricate as the function it-
self. Instead, time complexity is usually given by placing a bound
in terms of a simpler class of functions that approximate the actual
running cost.

Arbitrary functions can be difficult to compare and analyse, yet
for a large class of functions, the logarithmico-exponential functions,
or L-functions, a useful complexity hierarchy can be constructed.

Definition 3.0.1 (L-function). A logarithmico-exponential function, or
L-function is a real, positive, monotonic, one-valued function on a
real variable defined for all values greater than some definite value
by a finite combination of algebraic symbols, exponentials, and
logarithms, operating on real constants and the variable.

It’s a picky point, but f (n) is not a
function, it is a value which is the
result of applying the function f to n.
That said, giving the value f (n) for
each n does describe the function f .

For instance, given the number n as input, the functions that
return n, n2, or n log(n) are all L-functions, whereas those that re-
turn −n, and −(n2) are not. Figure 3.1 plots the growth of various
simple L-functions.

L-Functions are particularly useful because the values they pro-
duce are well-behaved as the input grows large. This is captured by
the following theorem.

Theorem 3.0.1. Any L-function f is ultimately continuous, of con-
stant sign, monotonic, and as n → ∞, the value f (n) tends to one of
0, ∞, or some other definite limit.

This theorem is useful in that it allows the relationship between
L-functions to be categorised.
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Figure 3.1: Comparison of various
functions of n on linear and log scales.

3.1 Du Bois-Reymond Notation
The notation f ≺ g is due to du Bois-
Reymond [1870]. This was later ex-
tended by Hardy [1910] to include the
other relations presented here.

The first important concept when looking at complexity is the no-
tion of the rate of increase of a function relative to another: a function
can only be seen to grow quickly or slowly with respect to some
other function. As is standard, the rate of increase of two functions
can be understood as the ratio between them.

Now suppose f and g are L-functions, and consider the ratio of
the L-function f /g(n) = f (n)/g(n) as n tends to infinity. This gives
rise to a family of operations, ≺, ≼, ≍, ≽, and ≻ that can be used to
compare functions. There are many variations of these

definitions depending on whether or
not f is considered to be well-behaved.
The assumption that f and g are L-
functions is key to these particular
definitions.

f ≺ g ⇐⇒ lim
n→∞

f (n)
g(n)

= 0 (3.1)

f ≼ g ⇐⇒ lim
n→∞

f (n)
g(n)

< ∞ (3.2)

f ≍ g ⇐⇒ 0 < lim
n→∞

f (n)
g(n)

< ∞ (3.3)

f ≽ g ⇐⇒ lim
n→∞

f (n)
g(n)

> 0 (3.4)

f ≻ g ⇐⇒ lim
n→∞

f (n)
g(n)

= ∞ (3.5)

The result of comparing two L-functions f and g is depicted
in Figure 3.2, which shows the interval line of the real numbers
extended with the upper bound ∞.

For L-functions f and g, Theorem 3.0.1 says that one of f ≺ g,
f ≍ g, or f ≻ g must hold, forming a trichotomy. There are a
number of other properties which state that these operations behave
much like inequalities.

First, ≺ and ≻ are converse:

f ≺ g ⇐⇒ g ≻ f (3.6)
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f ≺ g

f ≼ g

f ≍ g

f ≽ g

f ≻ g

0 ∞
lim

n→∞
f (n)
g(n)

Figure 3.2: Interval lines showing the
relationship between f and g.

In addition, the operations are transitive:

f ≺ g ∧ g ≺ h =⇒ f ≺ h (3.7)

f ≼ g ∧ g ≼ h =⇒ f ≼ h (3.8)

There are many other properties that hold that are not listed here.
The following relations hold on functions of n, forming an (in-

complete) hierarchy of L-functions:

1 ≺ log n ≺
√

n ≺ n ≺ n log n ≺ n2 ≺ n3 ≺ n! ≺ nn

3.2 Bachman-Landau Notation

Bachmann [1894, p. 401] introduced
Big-O notation saying “[...] wenn wir
durch das Zeichen O(n) eine Grösse
ausdrücken, deren Ordnung in Bezug auf
n die Ordnung von n nicht überschreitet;
ob sie virklich Glieder von der Ordnung n
in sich enthält, bleibt bei dem bisherigen
Schlussverfahren dahingestellt.”

Landau [1909, p. 61] added the
mnemonic little-o notation, stating
“O soll an Ordnung, o an „von kleinerer
Ordnung” erinnern”.

The definition of Ω is a slightly con-
troversial topic. The original definition
is due to Hardy and Littlewood [1914]
and is slightly different to the version
presented in this course. Later, Knuth
[1976] decided to change the definition
presented here. He says “Although I
have changed Hardy and Littlewood’s
definition of Ω, I feel justified in do-
ing so because their definition is by
no means in wide use, and because
there are other ways to say what they
want to say in the comparatively rare
cases when their definition applies.”
Later, Vitányi and Meertens [1985]
pointed out that Hardy’s definition has
better complementary mathematical
properties.

O(g(n))

o(g(n))

Θ(g(n))

ω(g(n))

Ω(g(n))

Figure 3.3: Venn diagram of asymp-
totic notation for the function g. The
upper circle is O(g(n)), and the lower
circle is Ω(g(n)).

An alternative way of understanding the complexity of a function
is to use Bachman-Landau notation, sometimes also called Big-O
notation. Given a function f , its rate of growth can be measured by
a family of functions related to some function g. This gives rise to
the definitions of o, O, Θ, Ω, and ω which are operations which,
given a function of n produce a set of functions.

These operations can be defined in terms of the du Bois-Reymond
inequalities.

f ∈ o(g(n)) ⇐⇒ f ≺ g (3.9)

f ∈ O(g(n)) ⇐⇒ f ≼ g (3.10)

f ∈ Θ(g(n)) ⇐⇒ f ≍ g (3.11)

f ∈ Ω(g(n)) ⇐⇒ f ≽ g (3.12)

f ∈ ω(g(n)) ⇐⇒ f ≻ g (3.13)

These sets can also be defined directly:

o(g(n)) = { f |∀δ > 0.∃n0 > 0.∀n > n0. f (n) < δg(n) } (3.14)

O(g(n)) = { f |∃δ > 0.∃n0 > 0.∀n > n0. f (n) ⩽ δg(n) } (3.15)

Θ(g(n)) = O(g(n)) ∩Ω(g(n)) (3.16)

Ω(g(n)) = { f |∃δ > 0.∃n0 > 0.∀n > n0. f (n) ⩾ δg(n) } (3.17)

ω(g(n)) = { f |∀δ > 0.∃n0 > 0.∀n > n0. f (n) > δg(n) } (3.18)

(3.19)
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4
Lists

There are two ways of constructing a
software design: one way is to make it so
simple that there are obviously no deficiencies
and the other way is to make it so
complicated that there are no obvious
deficiencies. The first method is far more
difficult.

C. A. R. Hoare, 1980

One prevalent model of computation is as a series of steps exe-
cuted in sequential order. Since lists embody the notion of sequen-
tiality as data, it should be little surprise that they are a fundamen-
tal datastructure. This chapter studies lists and their representations
as an exercise in understanding the algorithms that accompany a
datastructure.

In Haskell, lists receive special treatment, where their notation
and definition are built into the language. That said, a definition of
lists in Haskell would look like the following code.

data [a ] = [ ]

| (:) a [a ]

The data keyword indicates that a new datatype is being intro-
duced. The type itself is called [a ], which can be constructed by
means of the constructors, [ ] for empty lists, and (:) for adding an
element to a list, introduced to the right of the equality symbol. The
types of these constructors is: Unlike a homogeneous list that

contains elements all of the same
type, a heterogeneous list such as
[1, True, ’a’, 5 ] contains values with
a mixture of types. These cannot be
defined using these constructors in
Haskell.

[ ] :: [a ]
(:) :: a→ [a ]→ [a ]

Given fully evaluated arguments, constructors are assumed to take
constant time to construct values.

Any homogeneous list can be expressed using these constructors.
For instance the term 1 : 3 : 3 : 7 : [ ] is a list containing 4 numbers.
The language provides syntactic sugar so that this list can also
be written simply as [1, 3, 3, 7 ], which is a welcome convenience.
Dually, any list can be decomposed into these two constructors,
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which forms the basis of a simple pattern for designing operations
on lists. Since Haskell is a lazy language, its

lists are equivalent to the streams
introduced by Landin [1965] in that
they need not be finite datastructures.
To avoid confusion, list will refer to
finite datastructures in these notes.

While the constructors of a list execute in constant time, it is
easy to come up with operations that produce lists that take longer.
For instance, consider how long it takes for the function (++) that
appends two lists together:

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

The whole list must be traversed, so given length xs = n, then
T(++)(n) ∈ O(n).

It is worth noticing that the list ys is persisted in this datastruc-
ture: no values were harmed in the creation of the list xs ++ ys.
This has the benefit that sharing ys across other computations costs
nothing, but at the cost of having to reallocate the space for xs.

4.1 List Origami

The most common way of working with a list is to decompose it in
a structured way, where the pattern of recursion follows the struc-
ture of the list itself. In the (++) example, the first parameter was
broken down using case analysis into the two possible constructors.
In the recursive case, the recursion was performed on the sublist in
the constructor.

This pattern of recursion crops up frequently, and is captured by
the foldr function:

foldr :: (a→ b→ b)→ b→ [a ]→ b
foldr f k [ ] = k
foldr f k (x : xs) = f x (foldr f k xs)

This pattern of recursion is useful because it is the fundamental
eliminator for lists. To understand its behaviour, it helps to see how
it behaves for a given list:

foldr f k [x1, x2, ..., xn ] = f x1 (f x2 (...(f xn k)))

When foldr is used with is a binary operator (⋄), the following
holds:

foldr (⋄) ϵ [x1, x2, ..., xn ] = x1 ⋄ (x2 ⋄ (... ⋄ (xn ⋄ ϵ)))

Furthermore, when (⋄) is associative and ϵ is a neutral element, this
is simply:

foldr (⋄) ϵ [x1, x2, ..., xn ] = x1 ⋄ x2 ⋄ ... ⋄ xn

One way to interpret this is that applying foldr is a destructor of
lists, dual to the operations (:) and [ ] which are constructors. This
can be seen by considering the effect of foldr (:) [ ]:
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foldr (:) [ ] [x1, x2, ..., xn ] = x1 : x2 : ... : xn : [ ]
= [x1, x2, ..., xn ]

This does nothing to the list, so foldr (:) [ ] = id. In other words,
destroying a list with its constructors leaves it unchanged.

As an example, the function concat takes a list of lists and ap-
pends their contents together maintaining their order in order to
produce a single list. It is defined as a recursive function is as fol-
lows:

concat :: [ [a ] ]→ [a ]
concat [ ] = [ ]

concat (xs : xss) = xs ++ concat xss

This can be defined in terms of a foldr. To see how, it helps to see
how the result is formed for some input:

concat [xs1, xs2, ..., xsn ] = xs1 ++ (xs2 ++ (... ++ (xsn ++ [ ])))

This is precisely the shape of a foldr, so an alternative definition of
concat is as follows:

concatr :: [ [a ] ]→ [a ]
concatr = foldr (++) [ ]

Many other functions can be defined as a foldr using this approach.
An obvious question at this point is to determine the complexity

of concat. Assuming that length xsi = m for each i helps with the
analysis, because each (++) operation deals with a list of the same
length, and T(++)(m) ∈ O(m).

xs1︸︷︷︸
m

++( xs2︸︷︷︸
m

++ ... ++( xsn︸︷︷︸
m

++[ ]))

Annotating each list with its length helps to visualise that the over-
all time taken is Tconcatr(m, n) ∈ O(nm), since the time it takes to
execute each (++) is dependent only on the size of its left argument.

4.2 Associativity Matters
A monoid is a set X that is equipped
with an associative binary operation
(⋄) : X× X → X and a neutral element
ϵ : X.

Since (++) is associative with a neutral element [ ], it is reasonable
to ask if there could have been an alternative definition where the
association is to the left:

concat [xs1, xs2, ..., xsn ] = ((([ ] ++ xs1) ++ xs2) ++ ...) ++ xsn

Just as foldr can be viewed as capturing the pattern of right-associated
definitions, foldl can be viewed as capturing the pattern of a left-
associated definitions.

The type of foldl takes a binary operation where the accumula-
tion of the function is in the leftmost parameter.

foldl (⋄) ϵ [x1, x2, ..., xn ] = (((ϵ ⋄ x1) ⋄ x2) ⋄ ...) ⋄ xn
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This can be expressed by the following definition:

foldl :: (b→ a→ b)→ b→ [a ]→ b
foldl f k [ ] = k
foldl f k (x : xs) = foldl f (f k x) xs

The base case is the same, where the parameter k is the result. In
the recursive case, foldl is tail recursive: it immediately calls itself
where the accumulating parameter stores the result of applying the
function f .

Using fold an alternative definition of concat is can be defined:

concatl :: [ [a ] ]→ [a ]
concatl = foldl (++) [ ]

It is possible to show by equational reasoning that concatl = concatr.
Since the functions are equal, it may be tempting to assume that
they also have the same time complexity. Alas, this is not the case.

To understand the complexity of concatl it helps to look at the
size of the lists which are being appended to the left of each (++):

((( []︸︷︷︸
0

++xs1)

︸ ︷︷ ︸
m

++xs2)

︸ ︷︷ ︸
2m

++...)

︸ ︷︷ ︸
(n−1)m

++xsn

This time the overall complexity is Tconcatl(m, n) ∈ O(n2m). The
lesson here is that although concatl and concatr are extensionally
equal, that is, the values they produce are the same, they are clearly
intensionally different, that is, they produce these values in different
ways.

Naively it would seem that this problem with associativity is
resolved by simply taking concatr as the appropriate definition,
since it has better characteristics. However, this does not avoid the
fundamental issue: lists that are composed through a series of left-
associated appends will suffer from bad performance. The trouble
is that this happens very naturally a string that logs information
is constructed by adding values to the end, and this ultimately
leads to a left-associated list. Resolving this problem will require
a change of representation of lists, which will be discussed in the
next chapter.
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Abstract Datatypes

We must beware of needless innovation,
especially when guided by logic.

Winston Churchill, 1942

Lists can be defined in terms of a concrete instance where the
specific constructors are listed and form the basis for pattern
matching functions that operate on the structure. Although this
demonstrates how a list is intended to behave, the problem is that
certain operations on lists can end up with unavoidable inefficien-
cies in that representation. This chapter discusses how an abstract
interface for lists can be created that can be instantiated to different
concrete implementations with varying complexity characteristics.

5.1 List Interface

class List list where
fromList :: [a ]→ list a
toList :: list a→ [a ]
normalize :: list a→ list a

empty :: list a
single :: a→ list a

cons :: a→ list a→ list a
snoc :: list a→ a→ list a
head :: list a→ a
tail :: list a→ list a
init :: list a→ list a
last :: list a→ a

isEmpty :: list a→ Bool
isSingle :: list a→ Bool

length :: list a→ Int
(++) :: list a→ list a→ list a

(!!) :: list a→ Int→ a

Figure 5.1: The abstract interface of
lists, given by the List type class

Haskell has fixed definitions for
most of these functions in the Prelude
already, so redefining them will
cause ambiguity. To generalise these
definitions into more abstract versions,
the Prelude versions must be hidden:

import Prelude hiding
(head, tail, init, last, (!!), length, (++))

Such hidden functions can still be used
with a fully qualified name such as
Prelude.length by importing Prelude
qualified:

import qualified Prelude

An abstract definition of a list specifies a series of operations that
work with lists. Key operations include empty, cons, snoc, length,
(++), head, tail, init, last, (!!), though this is not exhaustive. The op-
erations are specified by describing their effect on an underlying
abstraction. In this case the underlying abstraction is the standard
list type, since the goal is to provide alternative concrete implemen-
tations that behave similarly with respect to these operations.

Technically, not all of these operations are required to fully spec-
ify list behaviour: many of them can be defined in terms of the
others. However, for some of these operations, an efficient im-
plementation for certain list representations can only be given by
directly manipulating the concrete implementation.

The abstract list representation must contain these operations,
and so they are given by a new typeclass called List, given fully in
Figure 5.1. A type class outlines the signatures of functions that
must be implemented for a valid instance. In this case, the List class
takes a type parameter list which can be instantiated to a concrete
list implementation type.

The key operations of this class are toList and fromList, which
dictate the equivalence between the abstract list specification, which
are standard lists of type [a ], and the concrete list representation,
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which are of values of type list a.

class List list where
toList :: list a→ [a ]
fromList :: [a ]→ list a
...

These are properly defined when the following holds:

toList ◦ fromList = id

This establishes that an abstract list should not be modified when it
is passed through its representation.

More generally, toList is an example of an abstraction function:
it takes the concrete implementation to its abstract representa-
tion. Here, the type list a will be the concrete implementation, and
[a ] is its abstract representation. Dually, the function fromList is a
representation function since it determines the particular concrete
representation of the abstract type. An isomorphism between two types

a and b is given by a pair of functions
f :: a → b and g :: b → a such that
f ◦ g = id and g ◦ f = id.

It is tempting to give the specification as an isomorphism by
stipulating that fromList ◦ toList = id also holds. However, this is
too strong a requirement for certain representations where there
may be multiple ways of representing a particular list. That said,
toList ◦ fromList is a useful function for normalizing a representation
into a canonical form. The fact can be captured by a law that also
serves as the default implementation of normalize:

...
normalize :: list a→ list a
normalize = fromList ◦ toList
...

The composition of these functions will normalize the list represen-
tation, although it is possible that this function could be specialised
for a particular implementation.

Using toList and fromList also allows a simple specification of
the other functions: the action of operations on the representation
should be the same as their action on lists. For instance, here are
some properties of functions that allow the construction of lists:

...
empty :: list a
empty = fromList [ ]

cons :: a→ list a→ list a
cons x xs = fromList (x : toList xs)

single :: a→ list a
single x = fromList [x ]

snoc :: list a→ a→ list a
snoc xs x = fromList (toList xs ++ [x ])
...
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For instance, the tail function is specified by the following property:

tail = toList ◦ tail ◦ fromList

This says that the result of the tail function on regular lists is the
same as first converting from its representation, applying tail to that
representation, and the converting back to a list.

The other operations are specified in a similar way, and left as an
exercise for the reader.

5.2 Default Lists

The abstract representation of lists is given by [a ], the standard list
type. Unsurprisingly, standard lists can also serve as a perfectly
valid implementation. The functions toList ad fromList are simply
identities:

instance List [ ] where
fromList = id
toList = id

The normalization function is also an identity:

normalize = id

The instance for regular lists can either be given directly by ref-
erence to the standard function definitions in the Prelude, or by
redefining them in place. For instance, here are two alternative
implementations of the length function: By default Haskell will reject code

with signatures in the instances.
They are useful for humans and
are enabled here by using the
{-# LANGUAGE InstanceSigs #-}

language extension.

length :: [a ]→ Int
length [ ] = 0
length (x : xs) = 1 + length xs

This is the usual definition via pattern matching. The alternative is
to simply call the version that is already defined in the Prelude:

length :: [a ]→ Int
length = Prelude.length

At this point, it is a worthwhile exercise to get a sense of the time
complexities of the standard functions. In this case, given length xs =
n, the time it takes to compute length xs is given by Tlength ∈ O(n).

5.3 Tree Lists

A binary tree with values at its leaves can be considered to be a list,
where an in-order traversal of the list from left to right corresponds
to the order of the list elements. The benefit of this representation
is that appending two trees together is achieved by simply placing
them under a parent fork.
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5.4 Difference Lists

Difference lists are a way of getting constant time cons, snoc, and
(++). The trade-off is that now certain other operations become
more expensive. The difference list representation

was first introduced to functional
programming by Hughes [1986], but
the technique was actually predated
quite some time before by Cayley
[1854] who came up with the modern
mathematical definition of groups.

The main insight of a difference list is to replace the (++) opera-
tion with (◦), function composition, so that appending lists together
always ends up in a right-associated list. Right association is en-
sured because of the definition of function composition:

(◦) :: (b→ c)→ (a→ b)→ (a→ c)
(g ◦ f ) x = g (f x)

The composition g ◦ f ensures that f is applied to the argument first,
followed by g: application happens from right to left. If f = (xs++),
g = (ys++), and h = (zs++), then their composition applied to the
empty list gives:

((zs++) ◦ (ys++) ◦ (xs++)) [ ] = zs ++ (ys ++ (xs ++ [ ]))

In other words, the composition of these list appending functions
produces a nest of right-associated appends, which is desirable.

More abstractly, the goal is to represent of a list of type [a ] by
a function of type [a ] → [a ]. To this end a new type is created
that defines DList a with a single constructor that contains the list
representation:

newtype DList a = DList ([a ]→ [a ])

The idea is to design the representation function fromList and ap-
pend operation (++) so that the following should hold:

toList (fromList zs ++ fromList ys ++ fromList xs)
= { definition of fromList :: a→ DList a }

toList (DList (zs++) ++ DList (ys++) ++ DList (xs++))

= { definition of (++) :: DList a→ DList a→ DList a }
toList (DList ((zs++) ◦ (ys++) ◦ (xs++)))

= { definition of toList :: DList a→ [a ] }
((zs++) ◦ (ys++) ◦ (xs++)) [ ]

= { definition of (◦) :: ([a ]→ [a ])→ ([a ]→ [a ])→ ([a ]→ [a ]) }
zs ++ (ys ++ (xs ++ [ ]))

Note carefully that the append function (++) used here has type:

(++) :: List list⇒ list a→ list a→ list a

This has a constraint that states that list must be a member of the
List class, which allows it to work on different types, as annotated
in the calculation.

With this intuition in mind, the following definitions come out:

instance List DList where
toList :: DList a→ [a ]
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toList (DList fxs) = fxs [ ]

fromList :: [a ]→ DList a
fromList xs = DList (xs++)

(++) :: DList a→ DList a→ DList a
DList fxs ++ DList fys = DList (fxs ◦ fys)

The intention is that variables such as fxs represent functions on
lists, so that fxs = (xs++).
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Divide & Conquer

Divide et impera.

Philip II of Macedonia, 382–336 BC

Divide and conquer is one of the most fundamental and useful
algorithmic strategies. It consists of three parts:

1. Divide a problem into subproblems.

2. Divide and conquer subproblems into subsolutions.

3. Conquer subsolutions into a solution.

This is a recursive definition where it is assumed that certain prob-
lems are small enough to be solved without dividing them further.

6.1 Merge sort

A classic example of divide and conquer is merge sort:

msort :: [Int ]→ [Int ]
msort [ ] = [ ]

msort [x ] = [x ]
msort xs = merge (msort us) (msort vs)

where (us, vs) = splitAt (n ‘div‘ 2) xs
n = length xs

The splitAt function is used to divide the problem into subprob-
lems, and the merge solution is the conquer step that merges two
sorted lists:

merge :: [Int ]→ [Int ]→ [Int ]
merge [ ] ys = ys
merge xs [ ] = xs
merge (x : xs) (y : ys)
| x ⩽ y = x : merge xs (y : ys)
| otherwise = y : merge (x : xs) ys

Two of the cases of msort are base cases: when the list is empty or
singleton. This is critical to the termination of a divide and conquer
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strategy: the divide step must make the solution smaller, and the
algorithm must be able to directly solve small enough problems.

The complexity of msort can be calculated as follows:

Tmsort(0) = 1
Tmsort(1) = 1

Tmsort(n) = Tlength(n) + TsplitAt(
n
2
) + Tmerge(

n
2
) + 2× Tmsort(

n
2
)

Solving this recurrence gives Tmsort(n) ∈ Θ(n log n).

6.2 Quicksort

The quicksort algorithm is another example of a divide and conquer
algorithm that also sorts values:

qsort :: [Int ]→ [Int ]
qsort [ ] = [ ]

qsort [x ] = [x ]
qsort (x : xs) = qsort us ++ [x ] ++ qsort vs

where (us, vs) = partition (<x) xs

The divide step is given by the partition function, which inspects
each element in a list with a given predicate, in order to partition
the list into all elements that satisfy the predicate, and all elements
that do not. One question is whether to use <x or

⩽ x in the partition. Since the head
of the list is used as the pivot, <x is
desirable so that this is a stable sorting.

partition :: (a→ Bool)→ [a ]→ ([a ], [a ])
partition p xs = (filter p xs, filter (¬ ◦ p) xs)

The conquer step is more subtle to spot since it simply places the Choosing a good pivot turns out to be
essential for a good quicksort.pivot element x between the two partitions.

Although the best case performance of qsort is the same as msort,
it can do very badly if the pivot is not well chosen. In the worst
case, the analysis is:

Tqsort(n) = Tpartition(n− 1) + T++(n− 1) + Tqsort(n− 1) + Tqsort(0)
= c× n + Tqsort(n− 1)
= c× n + c× (n− 1) + . . . + c× 1

= c× n× (n + 1)
2

= c× n2 + n
2

In other words, Tqsort(n) ∈ O(n2) in the worst case.
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Dynamic Programming

A man who dares waste one hour of time
has not discovered the value of life.

Charles Darwin, 1836

“Thus, I thought dynamic program-
ming was a good name. It was some-
thing not even a Congressman could
object to. So I used it as an umbrella
for my activities” — Richard Bellman
(with other good excerpts in Dreyfus
[2002]).

Dynamic programming was first introduced by Bellman [1957]
as a technique to efficiently calculate the exact solutions to certain
recursive problems. The slogan for dynamic programming algo-
rithms is to trade space for speed: the table takes space in memory to
construct, but results in a much faster algorithm.

A key ingredient of dynamic programming is memoization. This
technique, coined by Michie [1968], is a means of storing the result
of a function call so that it can be used again later. Dynamic pro-
gramming works by optimising the runtime performance of a re-
cursive algorithm that has overlapping subproblems. The speedup
comes from storing the subsolutions through memoization for later
use instead of recomputing them every time they are needed.

The strategy is developed in two stages:

1. Write an inefficient recursive algorithm that solves the problem.

2. Improve efficiency by storing intermediate shared results.

As a simple example, dynamic programming can be applied to
speed up a naive implementation of the Fibonacci function.

Each Fibonacci number for a given value n is given by fib n given
by the following recursive algorithm:1 1 Notice that this returns an Integer

instead of Int. The function fib grows
very quickly: at fib 93 there is already
overflow on a 64 bit Int. The Integer
gives access to values with unbounded
precision.

fib :: Int→ Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n− 1) + fib (n− 2)

This code is remarkably inefficient, since there are repeated calls
to computations that recalculate the same value. Figure 7 shows
that fib 8 is called twice in the calculation of fib 10. In turn, fib 7 is
called three times, fib 6 five times, and so on.

fib 10

fib 8 fib 9

fib 6 fib 7 fib 7 fib 8

Figure 7.1: Call tree of fib 10, showing
multiple repeated computations.

As an approximation, assume that the two subcalls of fib have the
same cost, giving the recurrence relation:

Tfib(n) ⩽ 1 + 2× Tfib(n− 1)



[git] •

algorithm design & analysis 27

Solving this recurrence gives Tfib(n) ∈ O(2n). This is remarkably
expensive and due to the fact that there are large overlaps in the
solutions of subproblems, which keep getting recalculated.

There are many different approaches to making this faster. The
obvious one is to store additional information:

fib2 :: Int→ Integer
fib2 n = go n 0 1 where

go 0 x y = x
go n x y = go (n− 1) y (x + y)

The catch is that each call to fib2 must recalculate all previous
results; asking for fib 10000 followed by fib 10001 will perform a lot
of repeated computation.

The idea behind dynamic programming is to store common subso-
lutions to subproblems so that they can be reused in later computa-
tions.

Here is a simplified exposition of the idea:

fibs :: [Integer ]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib3 :: Int→ Integer
fib3 n = fibs !! n

The function fibs produces a lookup table of all the values that
have been computed so far. Asking for successive values of fib in a
session will reuse previous results. The problem here, however, is
that fibs is a list, which offers access to an element n in O(n) time.
An array would take only constant time to access precomputed
elements.

In our setting an array can be created with the function array,
that builds an array from a list containing indices and their values.

array :: Ix i⇒ (i, i)→ [ (i, a) ]→ Array i a

The Array type comes equipped with an operation that can look up
values in constant time:

(!) :: Ix i⇒ Array i a→ i→ a

Given an array a and an index i, the result of a ! i is the value of the
array a at index i. This returns in constant time, or fails catastrophi-
cally if the index is out of bounds.

A more traditional way of presenting a dynamic programming
algorithm is to construct a table in an array containing the required
results, and then to pull values out of the table as required. More
concretely, the computation of fib n, involves defining an array
containing the values of fib for all numbers from 0 up to n.

The Array Int Integer type represents an
array indexed by Int containing values
of type Integer.

The function (!) provides constant-
time random access.

The function array takes a range
(u, v) of values as its bounds, and a list
of pairs where each pair (i, x) is used
to place x at index i in the table.

table :: Int→ Array Int Integer
table n = array (0, n) [ (0, 0)

, (1, 1)
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, (2, table ! 0 + table ! 1)
, (3, table ! 1 + table ! 2)
, ... ]

Notice that every element of table refers to solutions of previous This is, of course, not the best way to
calculate Fibonacci numbers (which
can be done in sublinear time), but it
illustrates how a recursive algorithm
can be made more efficient.

problems that eventually lead to a base case: there are no circular
references so the self-referential definition is well-defined. Here is a
version of fib that builds the right table and returns the last element
of the array.

fib′ :: Int→ Integer
fib′ n = table ! n

where
table :: Array Int Integer
table = tabulate (0, n) memo

memo 0 = 0
memo 1 = 1
memo n = table ! (n− 1) + table ! (n− 2)

The table given by tabulate (x, y) f contains the results of applying

It is important that memo is in the
same level of scope as table: if it were
top-level then a new table would be
created on each call!

f to all the values between x and y. It is implemented as an array
which gives constant time access to its elements. The constraint Ix i allows the values of

type i to be drawn from those given by
the range function, as well as enabling
values to be indexed over in an array.
This allows arrays to be indexed by
types other than Int. For instance, a
valid index is a tuple (Int, Int) for a
two-dimensional array indexed by
pairs of Ints.

tabulate :: Ix i⇒ (i, i)→ (i→ a)→ Array i a
tabulate (u, v) f = array (u, v) [(i, f i) | i← range (u, v) ]

The cost of building this table is the sum of all the individual calls
of f . The key to efficiency is that the function f can itself refer to
the table that is being constructed. If the cost of f is constant, such
that Tf (i) ∈ O(1), and the table has n elements, then the cost of its
construction is Ttable(n) ∈ O(n).

In the code above, memo is a local version of fib that finds values
in the table rather than by recursion. The function takes constant
time since (!) is a constant time operation. Thus, the time complex-
ity of evaluating fib′ n is given by:

Tfib′(n) = 1 + Ttable(n) + T!(n)

where Ttable(n) is the time it takes to construct the table, and T(!)(n)
is the time it take to look up a value in that table. Therefore, the
overall cost is Tfib′(n) ∈ O(n), which is much better than before.

import Dynamic (tabulate)
import Data.Array

fromList :: [a ]→ Array Int a
fromList xs = listArray (0, length xs− 1) xs
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Edit-Distance

The Edit-Distance Problem concerns itself with finding the so-called
Levenshtein distance between between two strings: the number of
insertions, deletions, and update it takes to turn one string into
another.

Notice that the problem can be simplified by considering only
deletions and updates: an insertion of a character into one string
to make a match is the same as deleting that character in the other
string.

One way to visualise the edit distance problem is to draw a tree
where each node contains the two strings that are currently being
compared. Moving to the left child represents a deletion of the first
character of the first string, and moving to the right child represents
a deletion of the first character of the second string. Both of these
moves add one to the edit distance cost.

Moving to the middle child represents matching the first char-
acters of both strings: if those characters are the same then the cost
is the same as that of the strings with those characters removed.
Otherwise, an update is required to make those characters match,
and the cost is the same as comparing the tails of the strings.
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Figure 8.1: Edit distance tree

Finding the minimum edit distance cost is achieved by finding
the lowest cost path starting at the root of the tree, and descending
to a leaf.

Notice, however, that this tree involves quite a lot of repetition:
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the strings obtained by deleting the first character of the first string
and then second string, in that order, is the same as deleting both at
the same time, which is the same right then left. This is what makes
this a perfect candidate for dynamic programming.

Before going for an efficient version of the program, it is easier to
write a recursive algorithm that solves this problem:

dist :: String→ String→ Int
dist xs [ ] = length xs
dist [ ] ys = length ys
dist xxs@(x : xs) yys@(y : ys) = minimum [dist xxs ys + 1

, dist xs yys + 1
, dist xs ys + if x ≡ y then 0 else 1 ]

The minimum function is called to consider the cheapest of the three
choices at each node. Each choice is modelled by a recursive call
to the strings with the appropriate character deleted, and has its
corresponding cost added.

While this code gives the correct answer, it is terribly inefficient:
there is a branching factor of 3, and the path from the root to the
leaves is |m + n|, where m is the length of xs and n is the length of
ys. This gives an overall complexity of O(3|m+n|).

This complexity can be improved by applying dynamic pro-
gramming so that subsolutions can be reused between invocations.
Before going to a dynamic programming solution, however, a little
work is needed. In dist, the recursive calls make use of different
String parameters, and these make a very poor choice of index for
an array. To see why a String is a bad index,

consider how the index might be
constructed to contain all strings.dist′ :: String→ String→ Int→ Int→ Int

dist′ xs ys i 0 = i
dist′ xs ys 0 j = j
dist′ xs ys i j = minimum [dist′ xs ys i (j− 1) + 1

, dist′ xs ys (i− 1) j + 1
, dist′ xs ys (i− 1) (j− 1) + if x ≡ y then 0 else 1 ]

where
m = length xs
n = length ys
x = xs !! (m− i)
y = ys !! (n− j)

This code now uses appropriate values for indexing.
The transformation to an efficient dynamic problem is quite

routine. The recursive calls are replaced by lookups into the table,
and the table is populated with the memo function, which mirrors
the recursive definition.

dist′′ :: String→ String→ Int
dist′′ xs ys = table ! (m, n)
where

table = tabulate ((0, 0), (m, n)) (uncurry memo)
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memo :: Int→ Int→ Int
memo i 0 = i
memo 0 j = j
memo i j = minimum [ table ! (i, j− 1) + 1

, table ! (i− 1, j) + 1
, table ! (i− 1, j− 1) + if x ≡ y then 0 else 1 ]

where
x = axs ! (m− i)
y = ays ! (n− j)

m = length xs
n = length ys

axs, ays :: Array Int Char
axs = fromList xs
ays = fromList ys

One small adjustment is that lookup of the values in table should
be done in constant time. To achieve this, arrays axs and ays are
created from xs and ys, and values x and y are drawn from those
using an array lookup.

To estimate the running cost of this version, note first that there
are m × n entries in the table. Each entry costs a constant time to
create, so the overall cost is O(mn).
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9
Bitonic Travelling Salesman

An investment in knowledge pays the best
interest.

Benjamin Franklin

The travelling salesman is a classic algorithmic problem. Given
a set of cities connected by roads, the task is to plan the shortest
route of a salesman along these roads who, starting in his home
city, must visit each other city exactly once before returning home.

While this problem is difficult to solve efficiently, a variation
called the bitonic travelling salesman problem has a nice dynamic
programming solution. The bitonic travelling salesman has a sim-
ilar goal: each city must be visited exactly once before returning
home. The difference is that the cities are on a Euclidian plane, are
all connected directly to one another, and the path that the sales-
man must take is a bitonic tour. To keep things simple, assume that Since this is a Euclidian plane it must

be the case that the two paths never
cross: a shorter path between four
points can always be found that has no
crossovers, this fact isn’t directly used
in this implementation.

there are m + 1 cities sorted from left to right, so that p0, . . . , pm de-
termines their locations. The distance between two cities indexed by
i and j can is also given in terms of δ i j.

A bitonic tour from p0 to pn is a path that visits the points
p0, . . . , pn exactly once with the property that it starts at the left-
most point p0, heads only to the right before reaching the rightmost
point pn, and then heads only to the left before reaching back to the
leftmost point.

The problem is solved with the function bitonic which, given
the distance δ between any two points and an index n, calculates
the shortest bitonic tour from p0 to pn. The solution to the bitonic
travelling salesman problem is thus the result given by bitonic δ m.

To construct this function, consider the properties of the short-
est bitonic tour from p0 to pn. Each point is connected with two
others and, apart from the endpoints, this must be with one point
somewhere to the left, and with one point somewhere to the right.

Focusing on the endpoints, p1 must be connected with p0 since
there are no other points to the left, and similarly pn−1 must be
connected with pn. Furthermore, consider the longest contiguous
path pk, pk+1, . . . , pn−1, pn, where 1 ⩽ k ⩽ n− 1, that flows in one
direction. Since it is an endpoint, pn must be connected with the
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point pk−1 in the other direction.
The shortest bitonic tour must contain all of these edges, in addi-

tion to the edges in a path that connect p0 with pk in one direction
and that connect pk−1 with p0 in the other with no overlapping
nodes except at p0. Furthermore, the sum of the lengths of these
paths must be the shortest. This is precisely given by the shortest
bitonic tour from p0 to pk where the edge between pk and pk−1 has
been removed.

To summarize, if k is supplied then the length shortest bitonic
tour can be calculated with the following equation:

bitonic δ n = bitonic δ k− δ (k− 1) k
+ δ (k− 1) n
+ sum [δ i (i + 1) | i← [k . . n− 1 ]

The trouble is that k is not given up front, so it must be found.
The desired value of k is bounded between 1 and n − 1. Ad-

ditionally, it must be the one that minimises this equation. This
directly gives rise to the following recursive definition of bitonic:

bitonic :: (Int→ Int→ Double)→ Int→ Double
bitonic δ 0 = 0
bitonic δ 1 = 2× δ 0 1
bitonic δ n =

minimum [ bitonic δ k− δ (k− 1) k
+ δ (k− 1) n
+ sum [δ i (i + 1) | i← [k . . n− 1 ] ]

| k← [1 . . n− 1 ] ]

Looking at the recursive structure of this algorithm, it should be
clear that it is ripe for dynamic programming, since there are many
repeated calls to bitonic δ k for many different values of k.

This code can be tested by creating
some examples:

type Point = (Double, Double)

example :: Array Int Point
example = array (0, 3) (zip [0 . . ]
[ (0, 0), (3, 4), (4, 3), (7, 7) ])

dist :: Array Int Point
→ Int→ Int→ Double

dist ar i j = sqrt (x× x + y× y) where
(xi, yi) = ar ! i
(xj, yj) = ar ! j
x = xi− xj
y = yi− yj

To use this simply calculate the value
bitonic′ (dist example) 3, which is 20.

The tabulated version of this function will allocate an array of
m + 1 elements, one value for each point index. Filling each element
in this array will need to search for k which will take linear time,
assuming the summations can all be done in constant time, which
brings the overall complexity algorithm to O(m2) time to compute.

9.0.1 Solution Extraction

Before working on the tabulated version it is worth considering
how this recursion can be modified to give rise not only to the
length of the shortest bitonic tour, but also to the order in which the
points are visited. A simple way of achieving this is to additionally
store a list of the paths, where the paths are represented by a pair
of indices.

While the logic of the program remains the same, this change of
type will require most of the code to be rewritten. An alternative
is to apply a little abstraction, by looking at which operations the
function bitonic requires: as well as applying addition and negation
the minimum is needed, which in turn implies an ordering and a
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zero element. Overriding these operations can be achieved rela-
tively easily by creating a new datatype that captures the required
data, and implementing the relevant classes. Technically, a valid Num instance also

needs implementations of (×), abs,
signum and a complete fromInteger,
but these are not needed here and the
convenience is simply too tempting.

data Path = Path Double [ (Int, Int) ]
deriving (Show, Eq, Ord)

instance Num Path where
Path d1 ps1 + Path d2 ps2 = Path (d1 + d2) (ps1 ++ ps2)

Path d1 ps1 − Path d2 ps2 = Path (d1 − d2) (ps1 \\ ps2)

fromInteger 0 = Path 0 [ ]

An invariance that will prove useful is to ensure that the compo-
nents of pairs are in order, where (i, j) ensures that i ⩽ j, since this
will make it easier to remove edges.

Now the new version of bitonic′ is largely the same as before.

bitonic′ :: (Int→ Int→ Double)→ Int→ Path
bitonic′ δ 0 = Path 0 [ (0, 0) ]
bitonic′ δ 1 = Path (2× δ 0 1) [(0, 1), (0, 1) ]
bitonic′ δ n =

minimum [ bitonic′ δ k− δ′ (k− 1) k
+ δ′ (k− 1) n
+ sum [δ′ i (i + 1) | i← [k . . n− 1 ] ]

| k← [1 . . n− 1 ] ]
where

δ′ :: Int→ Int→ Path
δ′ i j = Path (δ i j) [(min i j, max i j) ]

The main difference is the use of δ′, which uses δ to construct a
path with the relevant distance and point information whilst nor-
malizing the indices in pairs.

The tabulated version then follows the standard recipe: the re-
cursive call is replaced with a lookup to a table, and the shared
variable δ is lifted out.

bitonic′′ :: (Int→ Int→ Double)→ Int→ Path
bitonic′′ δ n = table ! n where

table = tabulate (0, n) mbitonic

mbitonic :: Int→ Path
mbitonic 0 = Path 0 [ (0, 0) ]
mbitonic 1 = Path (2× δ 0 1) [(0, 1), (0, 1) ]
mbitonic n =

minimum [ table ! k− δ′ (k− 1) k
+ δ′ (k− 1) n
+ sum [δ′ i (i + 1) | i← [k . . n− 1 ] ]

| k← [1 . . n− 1 ] ]
where

δ′ :: Int→ Int→ Path
δ′ i j = Path (δ i j) [(min i j, max i j) ]

Although this is clearly a better version than the recursive one,
there are still some modifications needed for the complexity to be
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O(m2). In particular, the cost of summing is not constant here since
a list of values must be traversed. That said, calculating these re-
sults up-front and storing them for later retrieval is easily done
quickly enough. Furthermore, the representation of paths is conve-
nient but not optimal.
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Amortized Analysis

No man is an Iland,
intire of itselfe;
every man is a peece of the Continent,
a part of the maine;

John Donne, 1624

Devotions upon Emergent Occasions

The complexity of the algorithms studied so far has been under-
stood in terms of a single executions of the algorithm in isolation.
Sometimes, however, the cost of an algorithm must be understood
in its wider context. For instance, the application of an operations
on a datastructure can interact with it in such a way that the cost
of later operations is affected. This chapter explores amortized anal-
ysis, which takes gives the cost of an operation in the context of a
sequence of previous operations on a datastructure.

10.1 Deques

In an ordinary list adding elements to the back is expensive: as
shown in the implementation of snoc:

snoc :: [a ]→ a→ [a ]
snoc xs y = xs ++ [y ]

The complexity of this, inherited from (++), is O(n) where n is the Of course, if a list is grown only
adding elements to the rear in this
way, then it is preferable to add the
elements to the front instead, and
eventually reverse the result. However,
this might not always be possible:
perhaps elements are added to the
front and back in alternation.

length of xs. As a consequence elements should only be added to
the end of a list sparingly.

A double ended queue, or deque, sometimes also called a sym-
metric list, is a queue where elements can be added both at the
front and at the back efficiently, and is in this sense double ended.
The key insight is to represent the datastructure as a pair of queues:
one starting from the front, and one from the back.

data Deque a = Deque [a ] [a ]

The idea is that the list Deque xs sy contains two components xs
and sy, which together form the list with all the elements in xs
followed by the reversed elements sy. In order to ensure that the
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representation remains balanced enough, there will occasionally
have to be some shuffling of elements between the lists.

The goal will be to implement a List Deque class instance which
fulfills the List class operations (Figure 5.1). The instance for Deque
gives what is required:

instance List Deque where
toList :: Deque a→ [a ]
toList (Deque xs sy) = xs ++ reverse sy

With this in place, the next function to consider is fromList:

fromList :: [a ]→ Deque a
. . .

Now there are many different options. To guide the implementa-
tion, a deque datastructure Deque xs sy maintains the following
invariance on xs and sy, later on it will be shown that it is essential
for keeping the operations efficient as a whole:

isEmpty xs⇒ isEmpty sy ∨ isSingle sy
isEmpty sy⇒ isEmpty xs ∨ isSingle xs

These properties say that if one of the lists in the implementation
is empty, then the other must contain at most one element. These
properties are assumed and maintained by all the operations.

It is easy to construct a cheap fromListNaive function that creates
a deque in constant time:

fromListNaive :: [a ]→ Deque a
fromListNaive xs = Deque xs [ ]

However, this does not maintain the invariance and instead places
the whole list into the first component.

A different version that respects the invariance is the following,
which splits the list in two and puts half in each side:

fromList xs = Deque ys (reverse zs)
where (ys, zs) = splitAt (length xs ‘div‘ 2) xs

This costs O(n) when xs has length n, as would any version that
splits the input list xs. The inclusion of the invariance seems sus-
pect when considering the implementation of the fromList function
alone, since it has forced a more expensive implementation than the
naive one. However, the assumptions allow the other operations to
be implemented more efficiently.

Turning attention to the implementation of functions that con-
struct deques, here is the function empty, where both components
contain nothing:

empty :: Deque a
empty = Deque [ ] [ ]
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The symmetric nature of deques is seen in the way that the function
snoc is implemented. While the following is a tempting imple-
mentation for its simplicity, it does not satisfy the representation
invariant for deques:

snoc :: Deque a→ a→ Deque a
snoc (Deque xs sy) x = Deque xs (x : sy)

The function adds the element x onto the head of the list sy. Since
the list sy is reversed, this effectively places x onto the end of the
resulting list. The problem arises if xs is empty and sy is not: in this To check the invariance, evaluate

toList (snoc (fromList xs) x).case the invariant is violated.
One way to fix this problem is to add a special case for when

isEmpty xs holds, which corresponds to a pattern match when the
first argument is empty:

snoc :: Deque a→ a→ Deque a
snoc (Deque [ ] sy) x = Deque sy [x ]
snoc (Deque xs sy) x = Deque xs (x : sy)

In the first case, when evaluating snoc (Deque xs sy) x in the case
where isEmpty xs, the invariance ensures that isSingle sy holds,
which validates shifting the position of sy to the first parameter.

Following these implementations, checking if a deque is empty is
achieved by checking that both components are:

isEmpty :: Deque a→ Bool
isEmpty (Deque xs sy) = isEmpty xs ∧ isEmpty sy

When it comes to singleton lists, there are two possibilities, depend-
ing on which component is empty:

isSingle :: Deque a→ Bool
isSingle (Deque xs sy) = (isEmpty xs ∧ isSingle sy) ∨ (isSingle xs ∧ isEmpty sy)

Both of these functions are constant-time operations.
The representation is particularly interesting in the definition of

tail. It is important that the remaining Deque is rebalanced in order
to benefit from good complexity.

tail :: Deque a→ Deque a
tail (Deque [ ] [ ]) = error "tail: empty list"

tail (Deque [ ] sy) = empty
tail (Deque [x ] sy) = fromList (reverse sy)
tail (Deque (x : xs) sy) = Deque xs sy

Now consider the complexity of executing tail xs for a deque xs
where n = length xs. When run in isolation, with no assumptions
it should be clear that the cost is in the worst case is O(n), where
the case Deque [x ] sy is encountered, since fromList and reverse must
be used. However, a more careful analysis reveals that this cost is
rarely incurred.
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Consider, for example, the repeated application of tail in a chain,
starting with xs0 :: Deque a, where n = length xs0.

xs0
tail
⇝ xs1

tail
⇝ xs2

tail
⇝ . . . tail

⇝ xsn

The cost of these successive calls clearly reduces on each iteration.
But not only that, two successive calls of tail will not invoke the
costly Deque [x ] sy case: the result of fromList ensures that the list sy
is split into two balanced parts. If the worst cases are all taken indi-
vidually to be O(n), then this will give too high an approximation
to the overall cost.

10.2 Amortization

The complexity is an example of amortised analysis, where opera-
tions must be understood in a wider context, rather than treating
them in isolation. The general setting is where there is a sequence A comprehensive overview of amor-

tized complexity in a functional setting
is covered by Schoenmakers [1992]

of operations op0 . . . opn acting on an initial datastructure xs0.

xs0
op0⇝ xs1

op1⇝ . . .
opn⇝ xsn+1

To perform amortized analysis on these operations, there are three
things to define:

1. A cost function Copi
(xsi) for each operation opi on data xsi.

2. An amortized cost function Aopi
(xsi) for each operation opi on data

xsi.

3. A size function S(xs) that calculates the size of data xs.

The costs functions estimate how many steps it would take for each
operation to execute.

The goal is to define these functions so that they can do an ac-
counting of how much work needs to be done to execute an opera-
tion on a datastructure. They should be defined so that the follow-
ing holds:

Copi
(xsi) ⩽ Aopi

(xsi) + S(xsi)− S(xsi+1)

(10.1)
This says that for any given data xsi, its cost of executing the opera-
tion opi is less than the amortized cost, plus the difference between
the datastructure before and after the operation.

If this inequality can be shown to be true, then the summation
over a series of operations is given by:

n−1

∑
i=0

Copi
(xsi) ⩽

n−1

∑
i=0

Aopi
(xsi) + S(xs0)− S(xsn)

Furthermore, when S(xs0) = 0, then this implies:

n−1

∑
i=0

Copi
(xsi) ⩽

n−1

∑
i=0

Aopi
(xsi)

(10.2)
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This says that the sum of the cost functions is less than the sum of
the amortized costs. For example, if Aopi

(xs) = 1, then the total cost
is bounded by O(n).

This technique is now demonstrated by calculating the cost of
executing operations on a deque. First, various costs are assigned.
For cons, snoc, head, and last, the cost is simply 1, since these can be
performed by a simple pattern match:

Ccons(xs) = 1 Csnoc(xs) = 1

Chead(xs) = 1 Clast(xs) = 1

The tail function is a more expensive operation: when xs is a sin-
gleton list it will cost as many steps as there are elements in the
reversed:

Ctail(Deque xs sy) = if length xs > 1 then 1 else length sy

Now a simple amortized cost is given to all the operations.

Aop(xs) = 2

This cost is obviously higher than the real cost of some operations,
and lower than the real cost of others.

Finally, a size function is assigned to the data:

S(Deque xs sy) = |length xs− length sy|

With these pieces in place, it is easy to verify that Equation 10.1
holds. Consider the situation Deque xs′ sy′ = tail (Deque xs sy),
where length sy = k. In the worst case, when xs is a singleton list,
this implies that:

S(Deque xs sy) = k− 1

S(Deque xs′ sy′) = 1

So, substituting into Equation 10.1 this results in:

Ctail(Deque xs sy) ⩽ Atail(Deque xs sy) + S(Deque xs sy)− S(Deque xs′ sy′)

⇐⇒
k ⩽ 2 + (k− 1)− 1

This is clearly true. Therefore the time complexity of these instruc-
tions is bounded by O(n), and the amortized cost of tail is O(1).
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Random Access Lists

God made the integers,
all else is the work of man.

Leopald Kronecker

This section explores a representation of lists that is inspired by
numerical representations. These are the random access lists, which
benefit from constant time consing and log time access to arbitrary
elements.

11.1 Peano Numbers

Peano numbers are a simplistic way of counting natural numbers:
a number is either zero, or one more than some other number. As
data, this is represented by the Peano datatype. Here it is, along
with a few primitive functions:

data Peano = Zero | Succ Peano

inc :: Peano→ Peano
inc n = Succ n

dec :: Peano→ Peano
dec (Succ n) = n

add :: Peano→ Peano→ Peano
add Zero n = n
add (Succ m) n = Succ (add m n)

Now notice how the structure of lists is essentially the same, except
that there is now data involved:

data List a = Empty | Cons a (List a)

cons :: a→ List a→ List a
cons x xs = Cons x xs

tail :: List a→ List a
tail (Cons x xs) = xs

(++) :: List a→ List a→ List a
Empty ++ ys = ys
(Cons x xs) ++ ys = Cons x (xs ++ ys)
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This similarity points to a deep connection between numbers and
lists of a given length.

11.2 Binary Numbers

Now, a better counting system than Peano numbers is to use binary
digits instead:

type Binary = [Digit ]
data Digit = O | I

deriving Eq

The idea is to use a list of digits in a least-significant-bit first rep- Later Digit values will be compared, so
deriving Eq is added to the end of the
datatype declaration to allow this to
happen.

resentation, so that the list [I, O, I, I ] represents the number 13 =

1 · 20 + 0 · 21 + 1 · 22 + 1 · 23.
The operations for adding and subtracting numbers perform

binary arithmetic in the usual way:

inc :: Binary→ Binary
inc [ ] = [I ]
inc (O : bs) = I : bs
inc (I : bs) = O : (inc bs)

The complexity of inc is O(n) in the worst case, where n = length bs,
and bs contains only I. However, repeated applications of inc make
it so that this case does not happen every time. Amortized analysis
is a better way to analyse this complexity.

First, a cost is assigned for the inc instructions. This time, the
cost can be calculated carefully:

Cinc(bs) = t + 1 where t = length (takeWhile (≡ I) bs)

The cost of executing an inc instruction is the number of consecu-
tive I values starting from the head.

For the amortized cost, a constant value of 2 is chosen:

Ainc(bs) = 2

Finally, the size function will count the number of I values there are
in a given bs:

Sinc(bs) = b where b = length (filter (≡ I) bs)

With these ingredients in place, it is time to apply them to the
amortized cost equation (Equation 10.1) to see if the inequality
can be satisfied.

Given a list of binary digits bs and another bs′ = inc bs, the
following holds:

Cinc(bs) ⩽ Ainc(bs) + Sinc(bs)− Sinc(bs′)
⇔

t + 1 ⩽ 2 + b− b′ where b′ = b− t + 1
⇔
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t + 1 ⩽ 2 + b− (b− t + 1)
⇔

t + 1 ⩽ t + 1

This is true, and so it is the case that an appropriate amortized cost
for incr is O(1).

11.3 Binary Tree Lookup

Balanced binary trees allow efficient access to their elements. Here
is their datatype definition:

data Tree a = Tip | Leaf a | Fork Int (Tree a) (Tree a)

This datatype has three constructors. There are two base cases.
One simply has the value Tip, which represents a tree with no data.
The other base case has values such as Leaf x, containing only the
element x. In the recursive case, Fork n l r puts together two trees l
and r, and stores a value n which is the size of the tree, calculated
as the number of values held in its leaves.

A smart constructor is used to maintain that the tree stores its size
properly in n.

fork :: Tree a→ Tree a→ Tree a
fork l r = Fork (length l + length r) l r

This way, if new forks are constructed only with the fork function,
then the resulting trees will be well-behaved.

In fact any Tree a can be viewed as a list, where a traversal of the
leaves from left to right gives the correct sequence.

instance List Tree where
toList :: Tree a→ [a ]
toList (Tip) = [ ]

toList (Leaf x) = [x ]
toList (Fork n l r) = toList l ++ toList r

The length function can then be used to extract the number of ele-
ments in the tree:

length :: Tree a→ Int
length (Tip) = 0
length (Leaf x) = 1
length (Fork n l r) = n

Most of the other functions are fairly routine, but one that is of
interest is the unsafe lookup function:

(!!) :: Tree a→ Int→ a
Tip !! n = error "(!!): no values in a Tip!"

Leaf x !! 0 = x
Fork n l r !! k
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| k < m = l !! k
| otherwise = r !! (k−m)

where m = length l

If the tree is balanced, then this operation takes O(log n) time: each
recursive call considers half of the remaining tree.

11.4 Random Access Lists

The standard representation of lists models itself on the simple
counting system of Peano numbers. Peano numbers increase lin-
early in value as the size of their representation grows. Binary
numbers however grow exponentially in value as the size of their
representation grows. Random access lists model the structure of
lists on binary numbers, and benefit from this fact.

The datatype for random access list is RAList: An alternative definition is to use a
Tree′ where there is no Tip constructor.
A Tree′ can only represent nonempty
lists and so it cannot fully implement
the List class. However, the type
Maybe (Tree′ a) is a list representation,
where Nothing represents an empty
list, and Just t represents some non-
empty list encoded by t. Making this
an instance requires either a type
synonym or a way to compose type
constructors.

newtype RAList a = RAList [Tree a ]

It is possible to provide a List RAList instance with the required
functions. Here are some of the more interesting definitions.

instance List RAList where
toList :: RAList a→ [a ]
toList (RAList ts) = (concat ◦map toList) ts

Now the RAList will inherit much of the complexity of a Tree a. For
instance, here is the definition of an unsafe lookup:

(!!) :: RAList a→ Int→ a
RAList (t : ts) !! k
| isEmpty t = RAList ts !! k
| k < m = t !! k
| otherwise = RAList ts !! (k−m)

where m = length t

Given xs :: RAList a, the cost of performing xs !! k is O(log k) in the
worst case.

The interesting operation is the cons function:

cons :: a→ RAList a→ RAList a
cons x xs = RAList (consTrees (Leaf x) xs)

where
consTrees :: Tree a→ RAList a→ [Tree a ]
consTrees t (RAList [ ]) = [t ]
consTrees t (RAList (Tip : ts)) = t : ts
consTrees t (RAList (t′ : ts)) = Tip : consTrees (fork t t′) (RAList ts)

Notice that this follows the structure of the inc :: Binary → Binary
function, therefore benefiting from similar amortized complexity.
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Searching

Tranio: (as Lucentio) He is my father, sir,
and sooth to say, In count’nance somewhat
doth resemble you.
Biondello: (aside) As much as an apple
doth an oyster, and all one.

William Shakespeare
Taming of the Shrew, 1590–1592

Searching for data is one of the most frequently executed op-
erations. The operation can be performed on raw unsorted data,
but this is only really desirable if a search is only ever performed
once. More often than not there will be multiple queries and that
is where some organisation becomes desirable. This chapter works
towards binary search trees: a data structure that can be grown in-
crementally in an efficient way, and that allows efficient searching.

12.0.1 Equality

Searching for a value in a collection implies that there must be a
way to check that the right value has been found. The easiest way
to check is simply through equality. While it is clear that many
things can be compared for equality, such as numbers, characters,
and strings, this is not universally true: not all functions can be
compared. If all functions could be compared

then the Halting problem would be
solvable.

The Eq class is used to give the implementation of equality re-
quired. It says that a type a is an instance of the Eq class when the
(≡) function has an implementation:

class Eq a where
(≡) :: a→ a→ Bool

Valid implementations of the Eq class should have an equality oper-
ator that behaves in an expected way. This is specified by giving the
laws that make a valid equality operation. A valid (≡) operation is
one that is reflexive, symmetric, and transitive, where for all x, y, and
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z:

x ≡ x (reflexivity)

x ≡ y⇔ y ≡ x (symmetry)

x ≡ y ∧ y ≡ z⇒ x ≡ z (transitivity)

These laws are an essential part of the specification that outline The Prelude version of Eq also includes
negation ( ̸≡) which is not introduced
here for brevity.

what can be expected of any implementation.
For instance, here is a definition of some custom datatype for

fruit, and the implementation of Eq Fruit that demonstrates equal-
ity:

data Fruit = Apple | Orange

instance Eq Fruit where
Apple ≡ Apple = True
Orange ≡ Orange = True

≡ = False

This says that apples are apples and oranges are oranges, but
nothing else holds true. The language does not enforce that the
laws of equality hold for this instance, and it is up to the program-
mer to ensure that the implementation is valid.

12.1 Rummaging

Perhaps the simplest way to search for an element is to look through
an entire collection. This idea can be modelled quite simply by a list
of elements that have some means of comparing those elements
for equality. The rummage function is used to find an element in a
collection, where rummage x xs is true if and only if the element x is
contained in xs. This definition is a varia-

tion of my favourite joke:
if p x then True else False.

The serious version is:

rummage x [ ] = False
rummage x (y : ys) =

x ≡ y ∨ rummage x ys

This avoids the repetition of True.

rummage :: Eq a⇒ a→ [a ]→ Bool
rummage x [ ] = False
rummage x (y : ys)
| x ≡ y = True
| otherwise = rummage x ys

This function returns False if it reaches the empty list. Otherwise
it compares the element x to y and will perform a short-circuiting
disjunction with finding x in the remaining ys. In other words, if
x ≡ y then there is no need to evaluate recursively, but otherwise,
the recursive call is made.

This function is as simple as it is inefficient. It is obvious that
in the worst case it must check every element in a list of length n.
A little thought will reveal that this is also the average case. That
said, no preparation of the list was required before a rummage:
this can be executed on any messy list. By placing elements in a
datastructure with more order, it is possible to improve on this
complexity.
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12.2 Ordered Lists

One way to make searching faster is to strengthen the underlying
assumption on the datastructure. Plausibly, things might be better
if the elements are structured: then the searching could stop sooner
rather than rummaging tirelessly through an unordered mess. Other operators such as (<), (>), and

(⩾) are also part of the class in the
Prelude. These can all be defined in
terms of (⩽).

The assumption that the elements can be ordered is recorded
with an Ord constraint, which expects the (⩽) relation to be de-
fined. The Ord class itself relies on the existence of Eq, so that the
order (⩽) acn be compatible with equality (≡). Thus, if a type has
an Ord instance, it can be assumed that it also has an Eq instance.
The opposite is not always true: two elements may be comparable
for equality even though they cannot be ordered, like comparing
apples and oranges.

class Eq a⇒ Ord a where
(⩽) :: a→ a→ Bool
. . .

An appropriate definition of (⩽) is such that the relation is a partial A relation that is reflexive and transi-
tive is known as a preorder.order, which means that it is reflexive, transitive, and antisymmetric,

where for all x, y, and z:

x ⩽ x (reflexivity)

x ⩽ y ∧ y ⩽ z⇒ x ⩽ z (transitivity)

x ⩽ y ∧ y ⩽ x⇒ x ≡ y (antisymmetry)

Notice that stipulating antisymmetry requires equality.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

Figure 12.1: A Hasse diagram showing
the subsets of {a, b, c}. The subset
relation is a partial order.

A variation of a partial order is a total order where the relation is
also connex:

x ⩽ y ∨ y ⩽ x (connexity)

Notice that connexity implies reflexivity, making connexity a
weaker requirement: every total order is a partial order, but not
the other way around. One could imagine making a new

class, TOrd, which is for a total order.
It would have the same methods as
Ord, but with the additional require-
ment of connexity. This is not generally
implemented.

12.3 Partially Ordered Set

There are various ways to impose that the elements in a set have an
ordering, and one way is to use a partially ordered set, also known as
a poset.

class Poset poset where
toPoset :: Ord a⇒ [a ]→ poset a
fromPoset :: poset a→ [a ]

empty :: poset a
insert :: Ord a⇒ a→ poset a→ poset a
delete :: Ord a⇒ a→ poset a→ poset a

member :: Ord a⇒ a→ poset a→ Bool
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union :: Ord a⇒ poset a→ poset a→ poset a
inter :: Ord a⇒ poset a→ poset a→ poset a

These operations are all intended to behave like the usual opera-
tions on sets. Since this encodes a set, the datastructure does not
store duplicate elements.

Adding the Ord constraint alone is not enough to ensure a more
efficient algorithm. The naive implementation of this interface is as
an ordered list, where the member function is a more orderly version
of rummage: Every good joke has many variations.

Here is the serious version of member:

member :: Ord a⇒ a→ [a ]→ Bool
member x [ ] = False
member x (y : ys) =

x ≡ y ∨ (x < y ∧ member x ys)

I find that this is a little cumbersome.

instance Poset [ ] where
member :: Ord a⇒ a→ [a ]→ Bool
member x [ ] = False
member x (y : ys)
| x ≡ y = True
| x < y = member x ys
| otherwise = False

Alas, this code is barely any better. It is true that if the element is
not in the list then this is likely to terminate more quickly. How-
ever, the time complexity remains the same.

12.4 Search Trees

The quicksort algorithm works by taking a pivot that is used to
partition data into two parts: elements that are less than or equal
to that pivot, and elements greater than it. The structure of this
recursion can be captured in a Tree:

data Tree a = Nil | Node (Tree a) a (Tree a)

Creating such a tree from a list behaves much like the divide step of
quicksort:

instance Poset Tree where
toPoset :: Ord a⇒ [a ]→ Tree a
toPoset [ ] = Nil
toPoset (x : xs) = Node (toPoset us) x (toPoset vs)

where (us, vs) = partition (⩽ x) xs

This partitions the list, which is done in Θ(n) time, and the hope is
that the lists us and vs are each roughly of size n

2 , leading to 2log(n)
applications of toPoset.

Such trees are useful because when they are balanced they allow
fast access to elements within the tree. Somehow, this variation of the joke

isn’t that funny. Perhaps the punchline
is too overworked. Also, the serious
version is far too serious:

member x (Node lt y rt) =
x ≡ y ∨ (x < y ∧ member x lt) ∨ member x rt

member :: Ord a⇒ a→ Tree a→ Bool
member x Nil = False
member x (Node lt y rt)
| x ≡ y = True
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| x < y = member x lt
| otherwise = member x rt

If the tree is balanced, then its depth will force Tmember(n) ∈ O(log(n)),
where n is the number of elements in the tree.

However, the worst case complexity here is still linear. The fault
is not with member, but with the construction of the Tree by toPoset:
the hope of having lists of roughly equal size is easily dashed when
the input is already sorted, for instance.

12.5 Binary Search Trees

Binary search trees, also known as AVL trees (named after Adelson-
Velskii and Landis [1962]), are an interesting structure that carefully
balance trees by keeping track of their height. The implementation
is in terms of an HTree, where an extra parameter stores the height
of the tree.

type Height = Int

data HTree a = HTip
| HNode Height (HTree a) a (HTree a)

To ensure that the nodes are constructed in such a way that the
height is properly preserved, a smart constructor can be used:

hnode :: HTree a→ a→ HTree a→ HTree a
hnode lt x rt = HNode h lt x rt

where
h = (height lt⊔ height rt) + 1

height :: HTree a→ Int
height HTip = 0
height (HNode h lt x rt) = h

The interesting operation is insert, since this maintains that the
tree is properly balanced. This makes use of balancel and balancer
as smart constructors that create a new node whose subtrees are
balanced.

instance Poset HTree where
insert :: Ord a⇒ a→ HTree a→ HTree a
insert x HTip = hnode HTip x HTip
insert x t@(HNode lt y rt)
| x ≡ y = t
| x < y = balancel (insert x lt) y rt
| otherwise = balancer lt y (insert x rt)

The invariance that is maintained by balancel and balancer is that
the difference in height between any two siblings can be at most 1.

The definition proceeds by consdering the heights of the two
trees lt and rt that are being passed as input. A simple case is
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where the height of lt and rt differ by at most 1 already. Focus-
ing on balancel, where only the left tree has a value inserted into it,
it is only necessary to compare height lt− height rt:

balancel :: HTree a→ a→ HTree a→ HTree a
balancel lt y rt
| height lt− height rt ⩽ 1 = hnode lt y rt

As a diagram, the tree must be one of the following two, which
are already balanced:

y

lt rth h

y

lt

rth + 1
h

Otherwise, assume that the difference is exactly 2: this is the case
since the assumption is that the initial tree has an imbalance of at
most 1 to begin with. Inserting a single extra element will at most
increase this imbalance by an extra level.

If height lt = height rt + 2 then further analysis on the subchildren
of lt = Node llt x rlt yields some interesting cases.

Suppose that height llt > height rlt. Assuming that height rt = h,
then height lt = h + 2, and height llt = h + 1. This is depicted by the
left hand diagram below, and can be rotated to the right using rotr
to produce the balanced tree to the right.

y

x

llt

rlt

rt

h + 2

h + 1
h

h
rotr

x

llt

y

rlt rt

h + 1

h h

In fact, if height llt ≡ height rlt then this rotation also leaves the
tree relatively balanced, where the bias is at most 1.

The final case is when height llt < height rlt. Assuming that
h = height rt, it is possible to reason that the tree is shaped as
follows, where lt = Node llt w rlt and rlt = Node lrlt x rrlt:

y

w

llt
x

lrlt rrlt

rt

h

h h

h
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To balance this tree the goal will be to place x at the root, and
have subtrees of equal height h + 1. This can be achieved by first
rotating the left subtree lt to the left, and then rotating the whole
result to the right.

y

x

w

llt lrlt

rrlt

rt

h h

h

h
x

w

llt lrlt

y

rrlt lrth h h h

These cases can be encoded by:

| otherwise = case lt of
HNode llt x rlt | height llt ⩾ height rlt→ rotr (hnode lt y rt)

| otherwise → rotr (hnode (rotl lt) y rt)

All that is needed is a suitable definition of rotl and rotr, which can
be done by simple pattern matching:

rotr :: HTree a→ HTree a
rotr (HNode (HNode p x q) y r) = hnode p x (hnode q y r)

rotl :: HTree a→ HTree a
rotl (HNode p x (HNode q y r)) = hnode (hnode p x q) y r

The code for balancer follows a similar reasoning.
Turning to the analysis of complexity, it should be clear that

rotl, rotr and balancel all take constant time: they all make use of
contant time operations and do not recurse. Consequently, the insert
function costs only O(log(n)) time, assuming a balanced tree, to
create a balanced tree with an element inserted.
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Red-Black Trees

The one red leaf, the last of its clan,
That dances as often as dance it can,
Hanging so light, and hanging so high, On
the topmost twig that looks up at the sky.

Samuel Taylor Colleridge
Chritabel, 1797–1800

Red-black trees are another means of creating balanced trees.
Unlike AVL trees, they do not need to store the height of the cur-
rent tree, but work instead by storing a single bit that indicates the
“colour” of a node: red or black.

The trees are represented quite simply as a modification of a
binary tree with this additional information:

data Colour = R | B

data RBTree a = E
| N Colour (RBTree a) a (RBTree a)

This datastructure is subject to two invariants:

1. Every red node most have a black parent node

2. Every path from the root node to a leaf must have the same
number of black nodes

These conditions ensure that the tree is at most imbalanced by a
factor of at most two in one of its branches.

As with other binary trees and their variations, the motivation
for Red-Black trees is to provide fast searching, which is possible
when the tree is (roughly) balanced.

Figure 13.1: Valid Red-Black trees

Figure 13.2: Invalid Red-Black trees

The insert x function proceeds by inserting a new red leaf at the
bottom of the tree that contains the element x. This is achieved by
recursively calling the go function on the appropriate subtree until
an empty node is found. Every node along the path to that leaf is
balanced by applying the balance function. To ensure that the parent
node is not red, the blacken function is applied to the final result.

insert :: Ord a⇒ a→ RBTree a→ RBTree a
insert x t = blacken (go t)
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where
go :: RBTree a→ RBTree a
go E = N R E x E
go t@(N c lt y rt)
| x < y = balance c (go lt) y rt
| x ≡ y = t
| x > y = balance c lt y (go rt)

The blacken function simply changes the colour of a top node
from R to B, and returns the original tree t otherwise:

blacken :: RBTree a→ RBTree a
blacken (N R lt x rt) = N B lt x rt
blacken t = t

This function is only ever applied to the result of go t, which means
that it will only affect the root node, thus enforcing the first invari-
ant for that node.

The purpose of the balance function is to balance the tree by
ensuring that there are no red nodes with red children. Assuming
that the tree is valid to start with, the only new red node will have
been inserted at one of the leaves. The innermost application of
balance will be able to fix a potential red-red conlict, but may itself
create a new red node that needs fixing by the next call to balance.

There are four different cases of interest that balance needs to
account for:

z

y

x

a b

c

d

z

x

a
y

b c
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a
z
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b c
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c d

These have been arranged so that the resulting tree that is re-
quired is always the following:

y

x

a b

z

c d

The implementation of balance requires encoding these trees
using pattern matching:

balance :: Colour→ RBTree a→ a→ RBTree a→ RBTree a
balance B (N R (NR a x b) y c) z d = N R (N B a x b) y (N B c z d)
balance B (N R a x (NR b y c)) z d = N R (N B a x b) y (N B c z d)
balance B a x (N R (N R b y c) z d) = N R (N B a x b) y (N B c z d)
balance B a x (N R b y (N R c z d)) = N R (N B a x b) y (N B c z d)
balance c lt x rt = N c lt x rt
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As balance is recursively called, the root note will eventually
certainly be red, and so this is resolved with the blacken function.
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Randomized Algorithms

The assumption of an absolute determinism
is the essential foundation of every scientific
enquiry.

Max Planck

A randomized algorithm is an algorithm that uses random values
in its execution in order to produce a result. Such algorithms are
desirable when they produce results quickly with a high probabil-
ity. The performance characteristics of good randomized algorithms
can be better than deterministic alternatives in different ways: they
may use less time, less memory, or be able to cope with datasets
that are much larger or that have difficult edge cases.

There are two broad classifications of randomized algorithms:
Monte Carlo algorithms have a predictable running time but unpre-
dictably compute a correct result, and Las Vegas algorithms have
an unpredictable running time, but predictably compute a correct
result.

The names have to do with the way
that different casinos are run, but
the following mnemonic seems more
useful to remember the distinction:
Monte Carlo is Maybe Correct and Las
Vegas running Length Varies.

14.1 Determinism and Randomization

Functions always map the same inputs to the same outputs. This is
known as Leibniz’s law, or the identity of indiscernibles:

x = y⇒ f x = f y

This holds true for all values x, y and functions f . The value of
the output depends on the value of the input, and nothing else. A
consequence is that no function can return a truly random result:
every execution of a function on the same input will return the
same result.

They can, however, exhibit pseudo-random behaviour by de-
pending on some input that varies either explicitly or implicitly.
Since truly random values cannot be generated, from now on, the
term random will be used to mean pseudo-random. Random numbers are provided by

the random package on Hackage. It
can be installed with the command:
cabal install --lib random

The key idea behind random value generation is to start with
a seed value from which a random value and a new seed can be
extracted.
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Seed values have type StdGen and can be created with the
mkStdGen function:

mkStdGen :: Int→ StdGen

Once this value has been created, it can be passed to the random
function, which will return a random value of a given type, along
with a new seed of type StdGen. Here is the signature if the value
desired is an Int:

random :: StdGen→ (Int, StdGen)

The new seed can then be passed on to the next invocation of
random until all the random values that are desired have been ex-
tracted.

As an example of using this, here is the function randoms, which
uses this instance to generate a list of random Ints from a given
seed:

randoms :: StdGen→ [Int ]
randoms seed = x : randoms seed′

where (x, seed′) = random seed

This produces an infinite list of random values. You can import the Random class from
the random package with:

import System.Random

For simplicity, the version presented
in these notes is a specialised version
of Random: in its full generality the
behaviour of StdGen is specified by
another type class, and other functions
are provided that are not relevant to
this course.

It is not possible to generate random values of every type auto-
matically. However, the Random type class provides an interface for
generating random values where an instance is available. Here is an
idealized version of the class:

class Random a where
random :: StdGen→ (a, StdGen)
randoms :: StdGen→ [a ]

randomR :: (a, a)→ StdGen→ (a, StdGen)
randomRs :: (a, a)→ StdGen→ [a ]

The random function can be used to generate a single random value
of some type a, along with a new StdGen ready for use again. A
variant of this is randomR where random values are generated be-
tween a given range. Yet more variations are randoms and randomR,
which generate an infinite list of random values, but do not return
a new seed.

14.2 Randomized π

A classic Monte Carlo algorithm, though not one that is terribly
efficient, deals with computing the value of π. The key observation
is that a circle with radius 1 has an area of π. If a series of points
are randomly chosen within the square enclosing that circle, then
they will be contained in the circle with a ratio approaching π/4.
After throwing 100000 random values at the unit circle the estimate
of π is merely 3.14612. This is a similar technique to Buffon’s

needle, developed in the 18th Century.
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Using the Random interface, this can be encoded as follows:

montePi :: Double
montePi = loop (mkStdGen 42) samples 0

where
loop :: StdGen→ Int→ Int→ Double
loop seed 0 m = 4× fromIntegral m / fromIntegral samples
loop seed n m =

let (x, seed′) = randomR (0, 1) seed
(y, seed′′) = randomR (0, 1) seed′

m′ = if inside (x, y) then m + 1 else m
n′ = n− 1

in loop seed′′ n′ m′

samples :: Int
samples = 10000

The important point to note here is that the variables seed, seed′, and
seed′′ must be carefully scheduled to happen sequentially. The first
seed is used to generate x, the second seed′ is used to generate y, and
the third seed′′ is fed into the recursive body of loop.

Apart from the generation of the random values x and y, montePi
uses the inside function, which checks whether the given coordi-
nates lie inside a circle.

inside :: (Double, Double)→ Bool
inside (x, y) = x× x + y× y ⩽ 1

This is where the real work happens. Values that are inside the unit
circle increment the value m, and At each iteration the n parameter
of the loop gets closer to 0, at which point the proportion between
the values m that are inside the circle and the total number of sam-
ples is used to approximate π.

14.3 Sequencing Random Generators

Threading seeds around is somewhat tedious and error prone:
if the same seed is used more than once then the values that are
supposed to be independent random variables will end up being
the same value.

One way to resolve this is to handle the seed generation auto-
matically. This can be achieved in a context m which supports the
sequential generation of random values. In this variation the gen-
eration and threading of seed values is left completely implicit. The
key change in the following code is the use of the do keyword,
which indicates that the following block of code is to be executed
sequentially, one line at a time:

montePi′ :: MonadRandom m⇒ m Double
montePi′ = loop samples 0

where
loop :: MonadRandom m⇒ Int→ Int→ m Double
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loop 0 m = return (4× fromIntegral m / fromIntegral samples)
loop n m = do

x← getRandomR (0, 1)
y← getRandomR (0, 1)
let m′ = if inside (x, y) then m + 1 else m

n′ = n− 1
loop n′ m′

Notice that the value in the base case is wrapped around by a
return, and the assignment of the values x and y is through spe-
cial notation that indicates that they are the result of a sequential
operation getRandomR (0, 1). The type of this function is:

getRandomR :: MonadRandom m⇒ (Int, Int)→ m Int

Just like its pure counterpart randomR, it takes a pair that indicates
the range of the values it should produce. However, no seed is
required or delivered: this is managed behind the scenes automati-
cally.

The getRandomR function is part of the MonadRandom class:

class Monad m⇒ MonadRandom m where
getRandom :: Random a⇒ m a
getRandoms :: Random a⇒ m [a ]

getRandomR :: Random a⇒ (a, a)→ m a
getRandomRs :: Random a⇒ (a, a)→ m [a ]

This interface says that there are different contexts where it is possi-
ble handle the sequential generation of random values.

One way to evaluate this program is to use evalRand:

evalRand :: Rand StdGen a→ StdGen→ a

This forces the type m contrained by MonadRandom m to be Rand StdGen.
Using this, the following line evaluates a (very bad) approximation
to π:

GHCi > evalRand montePi′ (mkStdGen 42)
3.1264

This invocation makes the first parameter be montePi′ :: Rand StdGen Double,
and the value of the seed is mkstDgen 42 :: StdGen. The result is of
type Double. Since this is a pure function it will always return the
same value.

Another way to make use of the IO context, where montePi′ ::
IO Double. The program montePi′ is the same as before, but its type
has been resolved differently.

printPi :: IO ()

printPi = do pi← montePi′

print pi

This assigns the value of executing montePi′ to pi :: Double, which is
then printed. Here, the system provides the random values, rather
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than a fixed StdGen. Different runs of this program will return
(slightly) different results:

GHCi > printPi
3.1208
GHCi > printPi
3.1432

This is due to the fact that the seed that is being passed around is
being implicitly updated between executions.

14.4 Random Streams

A different approach to solving this problem is to use the randomRs
function. In this version, all of the random values are generated
before being transformed into an appropriate sample:

montePi′′ :: Double
montePi′′ = 4× fromIntegral (length (filter inside xys)) / fromIntegral samples

where xys = take samples (pairs (randomRs (0, 1) (mkStdGen 42) :: [Double ]))

pairs :: [a ]→ [ (a, a) ]
pairs (x : y : xys) = (x, y) : pairs xys

This solution is quite neat, but is somewhat different in character to
the more imperative implementation of montePi: it has avoided the
problem of having to thread the seed values around. One criticism
of the function is that the value mkStdGen 42 is hard coded into
the implementation. An obvious way of changing this is to make
seed a parameter to this function, and to pass mkStdGen 42 as an
argument.

An alternative to making a new parameter is to change the pro-
gram to use a MonadRandom constraint.

montePi′′′ :: MonadRandom m⇒ m Double
montePi′′′ = do

rxys← getRandomRs (0, 1)
let xys = take samples (pairs (rxys))
return (4× fromIntegral (length (filter inside xys)) / fromIntegral samples)

Just as with the previous example, this can now be used flexibly,
either using evalRand where the seed is provided as an argument, or
in a context such as IO.
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Treaps

Quantum theory yields much, but hardly
brings us close to the Old One’s secrets. I, in
any case, am convinced He does not play
dice with the universe.

Albert Einstein, 1926

15.1 Treaps

The binary search trees that have been studied so far have been
very carefully balanced by looking at information that is stored in
nodes and performing rotations to impose desired properties.

An alternative approach is to use randomization to ensure that
the tree is balanced on construction. A treap structure, which is the
combination of a binary tree and a heap. The values that are stored
in a treap are in symmetric order, so that compared to the value
at a node, values to the left are smaller, and values to the right are
larger. Additionally, parent nodes have a higher priority in the heap
than their children.

data Treap a = Empty | Node (Treap a) a Int (Treap a)
deriving Show

Here a value Node l v p r holds a left child l, a value v, a priority p,
and a right child r.

This allows for an efficient member function, since values can be
compared and are stored in order:

member :: Ord a⇒ a→ Treap a→ Bool
member x Empty = False
member x (Node a y b)
| x < y = member x a
| x ≡ y = True
| x > y = member x b

The insertion function into this data structure takes a value and a
priority and ensures not only that the node is inserted into the tree
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in symmetric order, but also that the heap property on priorities is
maintained.

insert :: Ord a⇒ a→ Int→ Treap a→ Treap a
insert x p Empty = Node Empty x p Empty
insert x p (Node a y q b)
| x < y = lnode (insert x p a) y q b
| x ≡ y = Node a y q b
| x > y = rnode a y q (insert x p b)

Notice that this insert function is quite different to the usual in-
terface: it makes use of a priority p, which will help decide where
elements should be positioned. Later, randomized treaps will be
introduced to remove this requirement (Section 15.2).

The smart constructors for this structure are for when there is an
insertion to the left or to the right.

lnode :: Treap a→ a→ Int→ Treap a→ Treap a
lnode Empty y q c = Node Empty y q c
lnode l@(Node a x p b) y q c
| q ⩽ p = Node l y q c -- = Node (Node a x p b) y q c
| otherwise = Node a x p (Node b y q c)

rnode :: Treap a→ a→ Int→ Treap a→ Treap a
rnode a x p Empty = Node a x p Empty
rnode a x p r@(Node b y q c)
| p ⩽ q = Node a x p r -- = Node a x p (Node b y q c)
| otherwise = Node (Node a x p b) y q c

To delete a node, the tree is recursively descended until the ap-
propriate node is found. At this point, the value in the node is
discarded and its two subnodes are merged.

delete :: Ord a⇒ a→ Treap a→ Treap a
delete x Empty = Empty
delete x (Node a y q b)
| x < y = Node (delete x a) y q b
| x ≡ y = merge a b
| x > y = Node a y q (delete x b)

This makes use of a function that can merge treaps, while maintain-
ing their properties:

merge :: Treap a→ Treap a→ Treap a
merge Empty r = r
merge l Empty = l
merge l@(Node a x p b) r@(Node c y q d)
| p < q = Node a x p (merge b r)
| otherwise = Node (merge l c) y q d

As with other treelike structures, it is possible to convert it to a list:

toList Empty = [ ]

toList (Node a x p b) = toList a ++ [x ] ++ toList b
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As usual, this is improved by replacing append with function com-
position, which results in a version that uses an accumulating pa-
rameter.

toList :: Treap a→ [a ]
toList t = toList′ t [ ]

where
toList′ :: Treap a→ [a ]→ [a ]
toList′ Empty xs = xs
toList′ (Node a x p b) xs = toList′ a (x : (toList′ b xs))

This version turns a treap into a list in linear time.
Making a Treap from a list requires values to come paired with

their priorities. If the priorities are randomly distributed, then on
average the resulting tree will be balanced.

fromList :: Ord a⇒ [a ]→ Treap a
fromList xs = foldr (uncurry insert) Empty (zip xs (randoms seed))

where seed = mkStdGen 42

When a Treap is constructed in this way the member function will
take log n time on average, where n is the number of elements in
the treap.

15.2 Randomized Treaps

The Treap datastructure has a specialised insert function that re-
quires a priority to be presented along with the value to be in-
serted. Although this technically works, it is somewhat inconve-
nient that the insert function requires priorities to be given explic-
itly. A better approach is to embed the random variables in the
treap itself and allow those priorities to be generated.

A randomized treap is a treap whose priorities are independent
and uniformly distributed continuous random variables. Such vari-
ables can be extracted from a standard random number generator,
which is abstracted by values of the type StdGen. The random vari-
able generator is stored alongside an ordinary treap.

data RTreap a = RTreap StdGen (Treap a)

The StdGen can be used to create a random value whenever random ::
StdGen → (Int, StdGen) is called, where random seed returns a pair
(x, seed′) such that x is a uniformly distributed value, and seed′ is
the next random generator.

The insert′ will therefore use the number generator to create a
new priority for each insertion, and update the generator in the
structure accordingly:

insert′ :: Ord a⇒ a→ RTreap a→ RTreap a
insert′ x (RTreap seed t) = RTreap seed′ (insert x p t)

where (p, seed′) = random seed
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All that is left is the instantiation of a new randomized treap. This
can be done in the empty constructor. As a pure function there
needs to be a deterministic seed:

empty′ :: RTreap a
empty′ = RTreap (mkStdGen 42) Empty

This will, of course, return the same tree given the same input. To
allow for a different tree at each instance requires the randomness
to be threaded through:

empty′′ :: StdGen→ RTreap a
empty′′ seed = RTreap seed Empty

As usual, a fromList function can be created for randomized treaps,
so long as the elements can be ordered.

fromList′ :: Ord a⇒ [a ]→ RTreap a
fromList′ xs = foldr insert′ empty′ xs

The toList′ function is essentially the same as for Treaps:

toList′ :: RTreap a→ [a ]
toList′ (RTreap seed t) = toList t

Notice that seed is not required to build the new list.

15.3 Randomized Quicksort

The standard deterministic quicksort has an average complexity of
O(n log n), but a terrible worst case of O(n2). Beware: randomization of quicksort

can happen in two different places: by
randomizing the input list order and
by randomizing the pivots. Randomiz-
ing the input list order does not help
with the expected worst case of the
input consisting of the same repeated
element.

Randomized treaps can be used to create a randomized quick-
sort. The function rquicksort below uses a fixed seed, since fromList′

uses empty′.

rquicksort :: Ord a⇒ [a ]→ [a ]
rquicksort xs = toList′ (fromList′ xs)

Now the worst case expected runtime is O(n log n).
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Randomized Binary Search Trees

A randomized binary search tree behaves like an ordinary binary
search tree most of the time, but with some probability will insert
a value at its root. The underlying datatype is an ordinary binary
tree:

data BTree a = BNil
| BNode (BTree a) a (BTree a)

Randomized binary search trees make use of two insertion func-
tions. One is the ordinary insertion that places an element in its
position amongst siblings:

insert :: Ord a⇒ a→ BTree a→ BTree a
insert x BNil = BNode BNil x BNil
insert x (BNode l y r)
| x < y = BNode (insert x l) y r
| x ≡ y = BNode l y r
| x > y = BNode l y (insert x r)

The other insertion places an element at the root, and then adjusts
the tree accordingly with rotations:

insertRoot :: Ord a⇒ a→ BTree a→ BTree a
insertRoot x BNil = BNode BNil x BNil
insertRoot x (BNode l y r)
| x < y = rotr (insertRoot x l) y r
| x ≡ y = BNode l y r
| x > y = rotl l y (insertRoot x r)

rotr :: BTree a→ a→ BTree a→ BTree a
rotr (BNode a x b) y c = BNode a x (BNode b y c)

rotl :: BTree a→ a→ BTree a→ BTree a
rotl a x (BNode b y c) = BNode (BNode a x b) y c

So far there has been nothing special in this construction. A random-
ized binary search tree contains a random seed and keeps track of the
number of elements in the tree:

data RBTree a = RBTree StdGen Int (BTree a)
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The empty RBTree simply instantiates the seed. As usual, this can
be done implicitly with a default seed:

empty :: RBTree a
empty = RBTree (mkStdGen 42) 0 BNil

Now the interesting part. The insert′ will insert an element into a
tree with n elements in the ordinary way, but with probability 1

n+1
will instead insert the value at the root.

insert′ :: Ord a⇒ a→ RBTree a→ RBTree a
insert′ x (RBTree seed n t)

| p ≡ 0 = RBTree seed′ (n + 1) (insertRoot x t)
| otherwise = RBTree seed′ (n + 1) (insert x t)

where
(p, seed′) = randomR (0, n) seed

This maintains balance with a very high probability, but note, only
returns correct results when distinct elements inserted using this
function at most once.



[git] •

17
Mutable Datastructures

Although it often leads to code that is difficult to analyse, the abil-
ity to mutate state can be desirable. This chapter explores mutable
datastructures, and how they can be expressed in Haskell. The
main motivation for using a mutable datastructure is that a location
of memory can be reused, thus requiring less garbage collection
which will in turn open up the possibility of more efficiency.

17.1 Mutable References

The fib function will once again serve as an example. This time,
the goal is to write a version that keeps track of the value of the
previous two Fibonacci numbers in the sequence.

Writing this as a pure function is as follows:

fib :: Int→ Integer
fib n = loop n 0 1
where

loop 0 x y = x
loop n x y = loop (n− 1) y (x + y)

The result of loop n x y is x when the base case of n = 0 is reached.
Otherwise, the loop is called again where n is decremented, and the
two parameters are updated to contain the next two values of the
sequence. The loop is initialized with values 0 and 1.

A different way to implement this function is to use mutable
state. A mutable value of type STRef s a holds a mutable reference
to a that can be created, read, and modified with three primitive
functions:

newSTRef :: a→ ST s (STRef s a)
readSTREf :: STRef s a→ ST s a
writeSTRef :: STRef s a→ a→ ST s ()

Notice that these operations all return values that work within an
ST s context.

Such values can only be extracted with the runST function:

runST :: (forall s ◦ ST s a)→ a
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The runST function is rather special in that it processes a sequential
computation, but remains a pure value by preventing any of its
internal state from escaping to the outside world.

The exact details of how this works are beyond the scope of this
course and it is enough to know that the first argument of type
ST s a represents a computation that results in a value of type a.
Since the scope of s is restricted, it is not allowed to appear in the
type a, and so types tagged with s cannot appear as the result of a
computation. In fact, the type of ays :: STArray s Int Bool reveals this
s within the computation: it would be a type error to try to return
ays.

By way of example, here is how fib could be implemented in an
imperative style with the STRef operations:

fib′ :: Int→ Integer
fib′ n = runST $ do

rx← newSTRef 0
ry← newSTRef 1
let loop 0 = do

x← readSTRef rx
return x

loop n = do
x← readSTRef rx
y← readSTRef ry
writeSTRef rx y
writeSTRef ry (x + y)
loop (n− 1)

loop n

Notice that this code all sits inside a runST clause. The do keyword
indicates that the code that follows should be executed in sequence,
one line after the other. The definition of loop reveals that in the
base case the value x is returned. This is the value that is extracted
by runST.

17.2 A Checklist

An essential mutable structure is the array. Just as with mutable
references, thre are primitive operations for arrays too:

newArray :: Ix i⇒ (i, i)→ a→ ST s (STArray s i a)
readArray :: Ix i⇒ STArray s i a→ i→ ST a
writeArray :: Ix i⇒ STArray s i a→ i→ a→ ST s (STArray s i a)

These operations are all assumed to take constant time. In practice,
this is only true for arrays that can fit into memory.

To see this in action, suppose the goal is to look for the smallest
natural number that does not occur in a list of numbers. Here is a
good specification: Bird [2010] presents a beautiful func-

tional solution to this that uses divide
and conquer and still has linear com-
plexity.

minfree :: [Int ]→ Int
minfree xs = head ([0 . . ] \\ xs)
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(\\) :: Eq a⇒ [a ]→ [a ]→ [a ]
us \\ vs = filter (¬ ◦ flip elem vs) us

This specifies the problem nicely, but it is not efficient.
One way to solve this problem efficiently is to keep a checklist of

what has been seen, and to go through that checklist and find the
first missing number.

minfree′ :: [Int ]→ Int
minfree′ xs = length (takeWhile id (checklist xs))

This makes use of the checklist function:

checklist :: [Int ]→ [Bool ]

The idea is that this function will return a list of booleans, where
the value at index x is True if x is a member of xs, and False other-
wise.

Implementing checklist with a pure datastructure is a difficult
task, but is quite standard as an imperative program. In the follow-
ing, the lines following the do notation are to be read sequentially.

checklist xs = runST $ do
ays← newArray (0, m− 1) False :: ST s (STArray s Int Bool)
sequence [writeArray ays x True | x← xs, x < m ]

getElems ays
where

m = length xs

This particular algorithm relies on mutability. To indicate this the
main body of the code is wrapped within runST, which indicates
that the code that follows is to be executed sequentially. Here, ays
is an array of m booleans that stores the numbers that have been
seen. Initially those booleans are all False. The list is xs then used to
to create a list of writeArray commands, that sets the elmeent with
index x in the array ays to True. These commands are executed in
sequence using the sequence function. Finally, the elements in the
array are returned using getElems.

17.3 Hashing

The ability to hash a value is a cornerstone of imperative programs.
A hash is simply an Int that is associated to a value. To do this
generically, here is the Hashable type class, that allows hash func-
tions to be defined for different types:

class Hashable a where
hash :: a→ Int

For instance, hash "Hello World!" = −1751827313531410753. Typi-
cally hashes are used as indices into an array that contains elements
that need later retrieval. Of course, storing an array with the whole
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range of Int as indicies is far too large even if if adjustments were
made for negative numbers. Usually, a much smaller index space is
created by working with the hash modulo the size of the array.

As an example, consider the nub function, which takes a list and
removes duplicates. The standard immutable version takes O(n2)

time where n is the length of the list. Using a mutable array, and
hashing it is possible to bring this down to O(n) if there are not too
many hash collisions. A world of frustration occurs is that

concat ◦ runST cannot be written. The
problem is that type inference for
function composition is unable to
resolve the type of s appropriately.
Resolving this with a type annotation
is beyond the scope of this course.

The following code builds a new array of size 256, where each
entry is a list of values that have been seen. These lists are extracted
using runST, and concat puts them together into a single list.

nub :: (Hashable a, Eq a)⇒ [a ]→ [a ]
nub xs = concat (runST $ do

axss← newListArray (0, 255) (replicate 256 [ ]) :: ST s (STArray s Int [a ])
sequence [do let hx = hash x ‘mod‘ 255

xs← readArray axss hx
unless (x ∈ xs) $ do

writeArray axss hx (x : xs)
| x← xs ]

getElems axss)

The initial state of axss is given by replicate 256 [ ], which creates
256 empty lists. Then, a sequence of instructions is executed, where
for each value x in xs, the hash modulo 266 of x is calculated and
assigned to hx. The list xs stored in the array at that index is ex-
tracted. Unless x is an element of xs, the array is updated so that
the list at the index hx also includes x. The hope is that xs is a small
list and that this operation costs O(1). Finally, the elements are
extracted with getElems.

Although hashing is a useful technique, it has a downfall: the
performance of algorithms that rely on it is prone to degrade if
the hash space is too small for the entries that are using it. In the
algorithm above, if there 256 buckets contains a list of size m, then
the ‘elem‘ function will take O(m), which negates the benefit of the
constant lookup.

17.4 Quicksort

One valid complaint about the quicksort algorithm previously
discussed is that it does not describe an in-place algorithm. Indeed,
one of the key features of quicksort is that it is possible to perform
the sorting in a single array by swapping elements.

Swapping elements at give indicies is quite an elementary part of
many in-place algorithms. This can be implemented with the swap
function:

swap :: STArray s Int a→ Int→ Int→ ST s ()
swap axs i j = do

x← readArray axs i



[git] •

algorithm design & analysis 70

y← readArray axs j
writeArray axs i y
writeArray axs j x

Here the mutable array axs is taken as a parameter, as well as two
indices i and j. The variables x and y are read from the array, and a
written into the swapped positions.

The qsort function takes in a list xs and sets up the array axs with
the appropriate size. This is then fed into the function aqsort which
does the real work.

qsort :: Ord a⇒ [a ]→ [a ]
qsort xs = runST $ do

axs← newListArray (0, n) xs
aqsort axs 0 n
getElems axs

where n = length xs− 1

The fact that there is mutation happening is hidden from the rest of
th system by wrapping sequential steps within a runST.

The aqsort function is relatively simple: it takes in the array axs
as an argument as well as the two i and j that indicate the range of
values that should be sorted.

aqsort :: Ord a⇒ STArray s Int a→ Int→ Int→ ST s ()
aqsort axs i j
| i ⩾ j = return ()

| otherwise = do
k← apartition axs i j
aqsort axs i (k− 1)
aqsort axs (k + 1) j

When i ⩾ j then this represents either a singleton or no value, in
which case the work is complete. Otherwise, the apartition function
is called that does the real work of partitioning the array between i
and j. It returns some index k which indicates the index of the pivot
that was chosen. The aqsort function is then recursively called on
the two partitions on either side of k.

The apartition function is used to work with the mutable array
and perform the partitioning in place. Calling apartition axs p q will
partition the values in the array axs between the indexes p and q,
using the pivot at index p as the pivot.

apartition :: Ord a⇒ STArray s Int a→ Int→ Int→ ST s Int
apartition axs p q = do

x← readArray axs p
let loop i j
| i > j = do swap axs p j

return j
| otherwise = do

u← readArray axs i
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if u < x
then do loop (i + 1) j
else do swap axs i j

loop i (j− 1)
loop (p + 1) q

This code works by first extracting the value x at the pivot p. Then,
the body of a loop is defined where loop i j will partition the el-
ements between i and j using the pivot x located at p. The loop is
executed with loop (p + 1) q, since the element at p is the pivot.

In the loop, if i > j then there are no more elements to partition,
and the correct position for x will be at the index j. Otherwise, the
idea is that the loop will compare x to the element at index i. If
the element is already in the right partition then the loop is called
again with i + 1. If the the element at i is out of place, it is swapped
with the element at j. Since the element now at j is in the correct
partition, the loop continues with j− 1.

To finish off, Here is a version of the function that does the par-
titioning on ordinary lists. The twist is that it does so by first con-
verting the list into an array, before doing an in-place partitioning
by calling apartition.

partition :: Ord a⇒ [a ]→ [a ]
partition [ ] = [ ]

partition xs = runST $ do
axs← newListArray (0, n) xs
apartition axs 0 n
getElems axs

where n = length xs− 1

When the list is not empty, this works by creating a new array
axs from the list xs, with indices ranging from 0 to n, where n =

length xs− 1. The call to apartition is used to partition the array axs.
Finally, when this is finished, the elements of the array are extracted
using getElems, which will return them as a list.

17.5 Array Resizing

Arrays provide constant time access to their elements, but this
comes at the cost of being fixed at a given size. That said, it is pos-
sible to provide behaviour that makes an array behave like a list of
arbitrary length. The idea is to insert elements into the array until
it is full. At this point a new array is created that is double the size
of the old. Elements are copied into the new array, and processing
continues. This is a good exercise in in amortized complexity: so
long as the resizing operation is not called too frequently, the array
continues to promise amortized constant time access to its elements.

Here is an implementation.

data ArrayList s a = ArrayList (STRef s Int) (STRef s Int) (STRef s (STArray s Int a))
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The value ArrayList n m axs represents a list with n elements stored
in the array axs, with a maximum capacity m.

Using the ArrayList constructor, here is empty array list with
an array of some minimum size and uninitialized values, which is
possible with the newArray_ function:

newArray_ :: Ix i⇒ (i, i)→ ST s (STArray s i a)

Working with uninitialized variables is of course a dangerous busi-
ness but in this case the invariance forces the array to be considered
as empty.

For the empty ArrayList, there is an arbitrary initial capacity, set
in this case to 8.

empty :: ST s (ArrayList s a)
empty = do pn ← newSTRef 0

pm ← newSTRef m
axs ← newArray_ (0, m− 1)
paxs← newSTRef axs
return (ArrayList pn pm paxs)

where m = 8

The idea is that the array is to be filled starting from its highest
index.

To extract the list that is being represented, the toList function
must work within an ST s context.

toList :: ArrayList s a→ ST s [a ]
toList (ArrayList rn rm raxs) = do

n← readSTRef rn
m← readSTRef rm
axs← readSTRef raxs
sequence [readArray axs i | i← [m− n . . m− 1 ] ]

The vaule n gives the number of elements to extract, and m shows
the maximum capacity. Together these give the range of indices
where values can be safely extracted from the array.

To insert values into the array requires some care. When the
array is full, a new one is created with twice the previous capacity
that contains all the old values.

insert :: a→ (ArrayList s a)→ ST s ()
insert x (ArrayList pn pm paxs) = do

n ← readSTRef pn
m ← readSTRef pm
axs← readSTRef paxs
writeSTRef pn (n + 1)
if n < m

then do
writeArray axs (m− n− 1) x

else do
let m′ = 2×m
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writeSTRef pm m′

axs′ ← newArray_ (0, m′ − 1)
writeSTRef paxs axs′

sequence [do x′ ← readArray axs i
writeArray axs′ (m + i) x′

| i← [0 . . m− 1 ] ]
writeArray axs′ (m− 1) x

First, the number of stored values n, the maximum capacity m, and
the array axs are extracted from the references. Since an insertion
is going to occur, the reference pn is updated to include an extra
element. Then, if the number of elements is less than the maximum
capacity then the array can be updated at position m− n− 1: this
is the free slot with the smallest index in the array. Otherwise, a
new array axs′ with maximum capacity m′ = 2×m is created, and
the references pm and paxs are updated acccordingly. At this point,
a sequence of operations are executed, one for each index i in the
original array, so that the values in axs are copied accross to axs′.
Finally, the new value is written into index m− 1, whcih is equal to
m′ − n− 1 when m = n, as is true in this case.

Although the insert above has amortized constant cost, the return
type ST s () forces it to only be used inside the context of a runST
computation. Here is how it might be used to implement an in-
place reversal:

reverse :: [Int ]→ [Int ]
reverse xs = runST $ do

pxs← empty
sequence [ insert x pxs | x← xs ]
toList pxs

This first converst the list into a ListArray by inserting the elements
one at a time into the array at pxs. Then, elements are extracted
using toList.
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