
COMP50001: Algorithm Design & Analysis

Sheet 2 (Week 3)

Exercise 2.1

Find a binary operation (⇧) :: (a ! a) ! (a ! a) ! (a ! a) and an

element e :: a ! a such that the set of functions of type a ! a with ⇧
and e forms a monoid.

Exercise 2.2

Given any two monoids (M1, ⇧1, e1) and (M2, ⇧2, e2), a monoid homo-

morphism from M1 to M2 is a function h :: M1 ! M2 such that

h (x ⇧1 y) = (h x) ⇧2(h y)

h e1 = e2

Give three monoid homomorphisms from ([Int ],++, [ ]) to (Int,+, 0).

Exercise 2.3

Calculate the asymptotic time complexity of concatl xs below in

terms of n and m where xs contains n lists, each containing m ele-

ments.

concatl :: [ [a ] ] ! [a ]

concatl = foldl (++) [ ]

Exercise 2.4

The List type class is shown in Figure 2.4. Complete the specifica-

tion of the List type class by providing a default implementation for

all the operations other than fromList and toList.

class List list where
fromList :: [a ] ! list a

toList :: list a ! [a ]
normalize :: list a ! list a

empty :: list a

single :: a ! list a

cons :: a ! list a ! list a

snoc :: list a ! a ! list a

head :: list a ! a

tail :: list a ! list a

init :: list a ! list a

last :: list a ! a

isEmpty :: list a ! Bool

isSingle :: list a ! Bool

length :: list a ! Int

(++) :: list a ! list a ! list a

(!!) :: list a ! Int ! a

Figure 1: List class definition

Exercise 2.5

Implement an instance of List using standard lists [a ] without using

functions from the Prelude other than the list constructors, and give

the time complexities of each operation.

Exercise 2.6

Implement an instance of List using the following Tree type:

data Tree a = Tip | Leaf a | Fork (Tree a) (Tree a)

Ensure that the worst case complexity of (++) is O(1). What is the

worst case complexity of head?
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Exercise 2.7

Define an instance of List using DList below, and give the complexi-

ties of all operations in terms of the length of the input list (assume

all DList arguments to functions are built using the operations in

List).

newtype DList a = DList ([a ] ! [a ])

Hint: fromList xs = DList (xs++). Consider carefully whether the

time complexity is affected by strict or lazy evaluation.

Exercise 2.8

Explain why the following implementation of fromList is undesir-

able in the last exercise:

fromList xs = DList (++xs)

Exercise 2.9

Prove or disprove the following assertions for the DList instance of

List from Exercise (2.7).

1. fromList (toList dxs) = dxs for any dxs :: DList a.

2. toList (fromList xs) = xs for any xs :: [a ].
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