
COMP50001: Algorithm Design & Analysis

Sheet 2 (Week 3)

Exercise 2.1

Find a binary operation (⇧) :: (a ! a) ! (a ! a) ! (a ! a) and an

element e :: a ! a such that the set of functions of type a ! a with ⇧
and e forms a monoid.

Exercise 2.2

Given any two monoids (M1, ⇧1, e1) and (M2, ⇧2, e2), a monoid homo-

morphism from M1 to M2 is a function h :: M1 ! M2 such that

h (x ⇧1 y) = (h x) ⇧2(h y)

h e1 = e2

Give three monoid homomorphisms from ([Int],++, []) to (Int,+, 0).

Exercise 2.3

Calculate the asymptotic time complexity of concatl xs below in

terms of n and m where xs contains n lists, each containing m ele-

ments.

concatl :: [[a]] ! [a]

concatl = foldl (++) []

Exercise 2.4

The List type class is shown in Figure 2.4. Complete the specifica-

tion of the List type class by providing a default implementation for

all the operations other than fromList and toList.

class List list where
fromList :: [a] ! list a

toList :: list a ! [a]
normalize :: list a ! list a

empty :: list a

single :: a ! list a

cons :: a ! list a ! list a

snoc :: list a ! a ! list a

head :: list a ! a

tail :: list a ! list a

init :: list a ! list a

last :: list a ! a

isEmpty :: list a ! Bool

isSingle :: list a ! Bool

length :: list a ! Int

(++) :: list a ! list a ! list a

(!!) :: list a ! Int ! a

Figure 1: List class definition

Exercise 2.5

Implement an instance of List using standard lists [a] without using

functions from the Prelude other than the list constructors, and give

the time complexities of each operation.

Exercise 2.6

Implement an instance of List using the following Tree type:

data Tree a = Tip | Leaf a | Fork (Tree a) (Tree a)

Ensure that the worst case complexity of (++) is O(1). What is the

worst case complexity of head?

Seminar 2

See lecture
or below

Snoc Cat s a Ca
Snee J y Cg
Snee Kasaly
X Shoe xs y

comp50001: algorithm design & analysis 2

Exercise 2.7

Define an instance of List using DList below, and give the complexi-

ties of all operations in terms of the length of the input list (assume

all DList arguments to functions are built using the operations in

List).

newtype DList a = DList ([a] ! [a])

Hint: fromList xs = DList (xs++). Consider carefully whether the

time complexity is affected by strict or lazy evaluation.

Exercise 2.8

Explain why the following implementation of fromList is undesir-

able in the last exercise:

fromList xs = DList (++xs)

Exercise 2.9

Prove or disprove the following assertions for the DList instance of

List from Exercise (2.7).

1. fromList (toList dxs) = dxs for any dxs :: DList a.

2. toList (fromList xs) = xs for any xs :: [a].

dataData at MhData a

Tarn newtypeNewly a MYNewtypea

MkData undefined

undefined

MleNenype udefied

undefined

Xs x ys Zs

E
DList Axs Shat tgs DistCats

I I
DList yes Hgs

ites

3 125 try I
x

The operation is b c yearsb Case
o amylase Casa

g f x gCfx

Associativity

f g h fay h

f g h x f g b x

fly Chal fly thx

Units

id glx idly x
g

f idly folidx
fx

he folder t 0 sum

has length xn

has const O

const 0 Xs Ys O

É to

TCF my lyon gas ex's

lengthys

tween yes

É
K TIK O m I

foul a ys xs xss
Felde x Cysties ass

K TIK n m Kt Them n I m

concatlass Ldl A Class

T 0in m

Of T m n I m

O t m t TC 2m n 2 m
O t m t 2m t t 3m n 3 m

É kxm T nm n m m

E Olam

empty from Lit E

heat an
themtolist xs

list a

con x xs fromlist X tolist Xs

t Tree a Tree a Tree a

Tiptikeeyxleafx

Tip ys yes

IT I Inxs is

head Tip error headTip

head leafy x

head t heat nomadic t

x a
herd tin A

a
o

f
Cats Ca

Feist reverse Dlict a

fromlist to list slit revenue

four list revere E3

fml.lt C
Slit Xx Xs E3

Deist Axs as

Deist id

tolist fromlist as I us

tolist Dust x ys xstys 1

Cyst as ys ET

as a c

Xs

