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Exercise 2.1

Find a binary operation (¢) :: (¢ — a) — (a — a) — (@ — a) and an
element € ::a — a such that the set of functions of type a — a with ¢
and € forms a monoid.

Exercise 2.2

Given any two monoids (Mj,¢1,€1) and (My, ¢y, €2), a monoid homo-
morphism from M, to M; is a function i :: My — M, such that

h (xory) = (hx)o(hy)
h€1 = €7

Give three monoid homomorphisms from ([Int], +,[]) to (Int,+,0).

Exercise 2.3

Calculate the asymptotic time complexity of concatl xs below in
terms of n and m where xs contains 7 lists, each containing m ele-
ments.

concatl :: [[a]] — [a] w bbw
concatl = foldl (+) [] of WJ .

Exercise 2.4

The List type class is shown in Figure 2.4. Complete the specifica-
tion of the List type class by providing a default implementation for
all the operations other than fromList and toList. J

Exercise 2.5

Implement an instance of List using standard lists [a] without using
functions from the Prelude other than the list constructors, and give
the time complexities of each operation. ./

Exercise 2.6

Implement an instance of List using the following Tree type:
data Tree a = Tip | Leaf a | Fork (Tree a) (Tree a)

Ensure that the worst case complexity of (+) is O(1). What is the
worst case complexity of head?

class List list where

fromList :: [a] — list a
toList :: list a — [a]
normalize :: list a — list a
empty :: list a

single::a — list a
cons::a — lista — lista
snoc::lista — a — lista

head ::lista — a

tail :: list a — list a

init :: list a — list a

last ::lista — a

isEmpty :: list a — Bool
isSingle :: list a — Bool
length :: list a — Int

(H-) =i lista — lista — lista
(1) ulista — Int — a

Figure 1: List class definition
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Exercise 2.7

Define an instance of List using DList below, and give the complexi-
ties of all operations in terms of the length of the input list (assumedq)(m ‘)w‘\ﬂl [, PR v\‘l W" A

all DList arguments to functions are built using the operations in
List).

15;(ype DList a = DList ([a] — [a]) Mw‘vw W“\Y‘V a= tl\k NU“’W o

Hint: fromList xs = DList (xs+-). Consider carefully whether the
time complexity is affected by strict or lazy evaluation.

Exercise 2.8

Explain why the following implementation of fromList is undesir- i

able in the last exercise: \.PV\—(}'U\‘

fromList xs = DList (+-xs)

Exercise 2.9

Prove or disprove the following assertions for the DList instance of
List from Exercise (2.7).

1. fromList (toList dxs) = dxs for any dxs :: DList a.

2. toList (fromList xs) = xs for any xs :: [a].
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Exercise 2.1

Find a binary operation (¢):: (a — a) — (a — a) — (a — a) and an
element € ::a — a such that the set of functions of type a — a with ¢
and € forms a monoid.
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Exercise 2.2

Given any two monoids (M, ¢1,€1) and (Mp, ¢y, €3), a monoid homo-

morphism from Mj to M; is a function h:: M — M; such that
—

h (xo1y) = (hx)ox(hy)
h €1 =€

Give three monoid homomorphisms from ([Int], +,[]) to (Int,+,0).

gz foldn (+) 0 = sum
Jay = o_bn%“lv (x”b)

Jaz = ok 0

ot 0 (xs#tye) = 0
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Exercise 2.4

The List type class is shown in Figure 2.4. Complete the specifica-
tion of the List type class by providing a default implementation for
all the operations other than fromList and toList.



class List list where
fromList :: [a] — list a
toList :: list a — [a]
normalize :: list a — list a

empty :: list a - ,em 3

single::a — list a ﬁmvg - L‘w E

cons::a — lista — list a

snoc::lista — a — list a PM(/ .

head ::list a — a NM X6 = W &’HJSb X3 )
wv

tail :: list a — list a
init :: list a — list a
last ::lista — a \,(‘k‘ Q

isEmpty :: list a — Bool
isSingle :: list a — Bool
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(") ::lista — Int — a

Exercise 2.6

Implement an instance of List using the following Tree type:
data Tree a = Tip | Leaf a | Fork (Tree a) (Tree a)

Ensure that the worst case complexity of (+) is O(1). What is the
worst case complexity of head?
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Exercise 2.9

Prove or disprove the following assertions for the DList instance of
List from Exercise (2.7).

1. fromList (toList dxs) = dxs for any dxs :: DList a.

2. toList (fromList xs) = xs for any xs :: [a].
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