COMPs50001: Algorithm Design & Analysis
Sheet 1 (Week 2)

Exercise 1.1

Given the following function concatenating two lists,
(+) :: [Int] — [Int] — [Int]

[l Arys=ys
(x:xs) Hys = x: (xs +H ys)

with a recurrence relation T (1, m), approximate the time it takes to
compute xs H-ys for any list xs of length n and ys of length m.

Exercise 1.2

Consider an alternative strict time analysis function T’, defined to
be the same as T, except that T’ is refined to have cost 1 instead 0
on variables, constants and primitive functions, i.e.

T'(x)
T'(k)
T'(f)x1 -

Compute T’ (length xs) in terms of T (length (tail xs)).
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Exercise 1.3

Compute the strict running time T (length (insert x xs)) using the
composition rule.

Exercise 1.4

Pattern matching can be added to the expression language e as
follows:
ex=---|caseeof [| = ¢ (x:xs) > e

Give an appropriate definition of T(case e; of [] — ep; (x:x5) — €3)
for strict time analysis.

Exercise 1.5
(ADWH, p39, Exercise 2.3) Prove formally that (n +1)? € @(n?) by
exhibiting the necessary constants.

Exercise 1.6

(ADWH], p39, Exercise 2.5) Justify whether each of the following is
true or false:

1. 2n% 4+ 3n € O(n?)

2. 2n% +3n € O(n®)



COMP50001: ALGORITHM DESIGN & ANALYSIS 2

3. nlogn € O(ny/n)
4. n++/n € O0(y/nlogn)
5. 21987 € O(n)

Exercise 1.7

Show formally that 0(g(n)) is a proper subset of O(g(n)) for any
function g using their definitions.

Exercise 1.8

Explain why there is no definition 6(g(#n)) that corresponds to
©(g(n)) even though there is 0(g(n)) corresponding to O(g(n))
and w(g(n)) corresponding to Q(g(n)).



Exercise 1.1

Given the following function concatenating two lists,

(H) 2 [Int] — [Int] — [Int]
[l Hys=ys
(x:xs) Hys = x:(xs +Hys)

with a recurrence relation T(n, m), approximate the time it takes to
compute xs H ys for any list xs of length n and ys of length m.
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Exercise 1.2

Consider an alternative strict time analysis function T’, defined to
be the same as T, except that T’ is refined to have cost 1 instead 0
on variables, constants and primitive functions, i.e.

T'(x)
T' (k)
T'(f) x1 -+ xn

Compute T'(length xs) in terms of T'(length (tail xs)).
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Exercise 1.3

Compute the strict running time T (length (insert x xs)) using the
composition rule.
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Exercise 1.4

Pattern matching can be added to the expression language e as
follows:
ex=---|caseeof [| e (x:xs) —e

Give an appropriate definition of T(case e; of [] — ep; (x:xs) — e3)
for strict time analysis.
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Exercise 1.5

(ADWH, p39, Exercise 2.3) Prove formally that (n + 1)? € ©(n?) by
exhibiting the necessary constants.
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Exercise 1.6

(ADWH, p39, Exercise 2.5) Justify whether each of the following is
true or false:

1. 2n% 4 3n € O(n?) /
2. 2n2 +3n € O(n3) /

3. nlogn € O(ny/n)
4. n++/n € O(y/nlogn)
5. zlngn e O(l’l

Exercise 1.7

Show formally that 0(g(n)) is a proper subset of O(g(n)) for any
function ¢ using their definitions.

V070.2n, >0. Fa > po. Oﬂ(.,\ £ ng,v) 9(5{,.\)

P;w$=\ \U/

3520.30,50 . . IS T4M)  g[qw)

Pin §=n =l w l-%_ O(j""\J

fa>Sn, . 3“‘) < g(u) 3 éO(ﬂ[h\3

ou/ g ¢ a(j(“))



| (V¥70-3ﬂ070. V“l 24, . ,C(h\ <g\f](n\)

& s
3 §70.¥no?0.-302n0 - [\ 23 §)

Cloesa e
Choogy, = N, |
3&.)7, ﬁ(n)

Tt go¢ o(gtn)

Exercise 1.8

Explain why there is no definition 8(g (7)) that corresponds to
©(g(n)) even though there is 0(g(n)) corresponding to O(g(n))
and w(g(n)) corresponding to (2(g(n)).
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