LECTURE 8 : Amortized Analysis

When we is an Iland,
introve of itselfe;
every man is a prece of the Continient,
a part of the maine;
- John Donne, 1624
Derotions upon Emergent Occasions.
Let's look at some list operation and their costs:
cons
$$O(1)$$
 since $O(n)$
head $O(1)$ list $O(n)$
tail $O(1)$ list $O(n)$
Let's instore some symmetry:
 $XS = \underbrace{US}$
VS
Deque us sv where $Sv = revene vs$
> data Deque $a = Deque [ai] (a)$

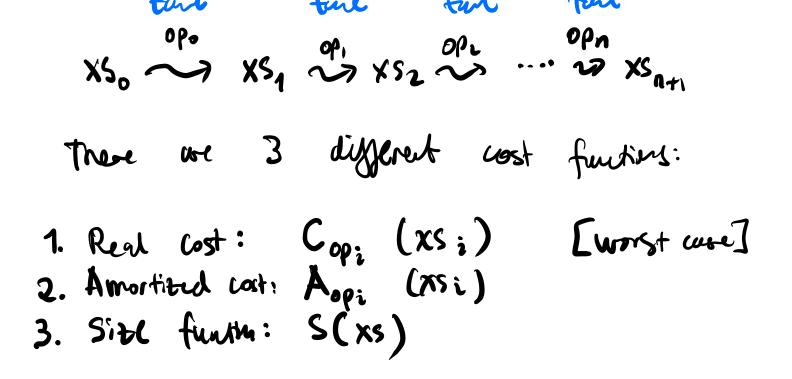
>tolist: Deque
$$a \rightarrow College
>tolist: Deque us sv) = us # reverse sv
A deque is subject to two invariants:
null us \Rightarrow null sv V single sv
null sv \Rightarrow null us V single us
Now to nucle a Deque:
Now to nucle a Deque:
Now to nucle a Deque:
Nowlist: Cal \Rightarrow Deque a
Marghery!
Rowlist: Cal \Rightarrow Deque a
Marghery!
Powlist: Cal \Rightarrow Deque a
Marghery!
Powlist: Cal \Rightarrow Deque a
Marghery!
Powlist: Cal \Rightarrow Deque a
Marghery!
Nowlist: So $=$ Deque as sv
 \Rightarrow where
 \Rightarrow (Nos, vs) = splitAt (n'div/2) xss
 \Rightarrow sv = reverse vs
 \Rightarrow o(1)
 \Rightarrow Cons :: $a \rightarrow$ Deque t $a \rightarrow$ Deque (x:us) sv$$

> Smoc :: Degre
$$q \rightarrow q \rightarrow begin q$$

> snoc (Degre EJ SV) $x = Degre sV [n]$
> snoc (Dyn us SV) $x = Degre us (x:sv)$
> last :: Degre $a \rightarrow a$ O(1)
> last (Degre us EJ) = head us $--\frac{b'}{last}$ us
> last (Degre us (v:sv)) = V

In amortized compexity, we are concerned with a sequence of operations:

the set of the



$$C_{\text{op};}(x_{S_i}) \leq A_{\text{op};}(x_{S_i}) + S(x_{S_i}) - S(x_{S_{i+1}})$$

$$= \sum_{j=0}^{n+1} (\operatorname{op}_{i}(xs_{i}) \leq \sum_{j=0}^{n+1} \operatorname{Aop}_{i}(xs_{i}) + S(xs_{0}) - S(x)_{n})$$

$$= \sum_{j=0}^{n+1} \operatorname{Assume} S(xs_{0}) = O$$

$$= O$$

$$= \sum_{i=0}^{n+1} (\operatorname{op}_{i}(xs_{i}) \leq \sum_{j=0}^{n+1} \operatorname{Aop}_{i}(xs_{0}))$$