⁶⁶ Perfection is achieved, not when there is nothing left to edd, but when there is nothing left to take away.⁹⁹ Antoine de Saint-Exupéry, 1939

Previously we calculated the cost of isove
$$[3,2,1]$$
:
> isove :: $[lnt] \rightarrow [lnt]$
> isove :: $lnt \rightarrow [lnt] \rightarrow [lnt] \rightarrow [lnt]$
> isove :: $lnt \rightarrow [lnt] \rightarrow [l$

ろ

$$\frac{1}{3} \frac{10}{12} \frac{12}{12} \frac{3}{13}$$
head $[1, 2, 3]$

$$\frac{1}{13} \frac{13}{13} \frac{12}{13} \frac{12}{13}$$

Wiscot
$$x x_{5} = if$$
 null x_{5}
then $x: EJ$
else if $x \le head x_{5}$
then $x: x_{5}$
of x_{6} with x_{7} then x_{7} and x_{7}
to analyte the (strict) time complexity of our
syntaxing largurge, we need a function T.
The x_{4} ... x_{n} time it tokes to evaluate
f x_{4} ... x_{n}
The hyper T tokes to evaluate
f x_{4} ... x_{n}
We hyper T by:
T(f) x_{4} ... $x_{n} = 0$ when f is primitive.
Dhus functions are of the form:
f x_{4} ... $x_{n} = e$
T(f) x_{4} ... $x_{n} = 1 + T(e)$

$$T(x) = 0$$

$$T(k) = 0$$

$$T(f e_{1} ... e_{n}) = T(f) e_{1} ... e_{n}$$

$$+ T(e_{n}) + ... + T(e_{n})$$

$$T(f e_{1} e_{1} e_{1} e_{1} e_{2})$$

$$= T(e) + if e_{1} f e_{1} f e_{1}$$

$$e_{1}(e_{1} + e_{2})$$

$$e_{1}(e_{1} + e_{2})$$

$$e_{1}(e_{2})$$

$$e_{2}(e_{2})$$

$$+ T(t) + T(keypter (triad xs)) + T(keypter (triad xs))$$

$$= [1 + if were vers then 0 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

composition rule :

The cost of
$$f(g(x))$$
 is given by $T(f(g(x))$
 $T(f(g(x)) = T(f)(gx) + T(gx))$
 $= T(f)(gx) + T(g)x + T(x))$
 $= T(f)(gx) + T(g)x$

Consider foldl:

