
CO202: Coursework 1
Autumn Term, 2021

1 Introduction

The goal of this coursework is to implement algorithms that will
be used to control your army in a game of Imperial Conquest: a
real-time strategy game that has been created for this course. It takes
place in a galaxy far, far away, where space travel to different planets
is made possible through a network of wormholes. Planets are able
to produce fleets of ships that can be sent to divide and conquer the
enemy.

Figure 1: Imperial Conquest boasts
a fashionable text-based interface
(though it will only come to life for the
second part of the coursework)

Both coursework assignments will use the same infrastructure.
This first assignment concerns itself with choosing a basic initial
strategy and some simple pathfinding. The second assignment will
deal with more complex strategies and dealing with opponents.

2 Submission

The code in this specification can be found in Submission1.hs, which
is a trimmed down version of what is presented here, that contains
all the relevant code. Your task is to modify Submission1.hs by im-
plementing the solutions to the questions.

During development, you might find it useful to load the source
file into GHCi by running ghci Submission1.hs. This way, you can
test your solutions, and ensure there are no compilation errors as

co202: coursework 1 2

you’re working on your code.
This coursework will be automarked: test suites are provided to

check your answers. In order to run the tests, you should run the
following command in the root directory of the repository:

$ make test

The submission of your coursework should be done via LabTS using
git commits in the usual way.

3 Background

Imperial Conquest is a game inspired by Galcon, a two player
real-time strategy game. A game of Imperial Conquest is played
between two players, and time progresses in a series of turns. All of the datatypes in this section are

relied upon for communication with the
server and should not be modified.

The Player data type represents the two players of the game.

data Player = Player1 | Player2

This first coursework involves no interaction between players, but the
data types will be shared between the second coursework, and so are
defined here. A newtype uses an existing type as

the basis of a new type by wrapping
values in a new constructor. Here it
means that a Ship cannot be confused
with a Growth, even though both are
fundamentally storing an Int.

The game is played on a map with a number of planets. Planets
are represented by the Planet type.

data Planet = Planet Owner Ships Growth

newtype Ships = Ships Int

newtype Growth = Growth Int

Thus, a planet is a value (Planet owner ships growth), where an
owner can be either neutral, or one of the two players:

data Owner = Neutral | Owned Player

Planets have a number of spaceships in garrison, represented by
ships that belong to the owner of the planet. Finally, each turn, plan-
ets that are owned by a player have factories which can produce a
number of ships given by the growth value.

In order to refer to planets, they each have an identifying number,
which is presented as a value of type PlanetId.

newtype PlanetId = PlanetId Int
A Map is a data structure that is pro-
vided in the Data.Map module, which
is documented at https://hackage.
haskell.org/package/containers-0.6.

2.1/docs/Data-Map-Lazy.html, which
gives operations and their complexities.

The Planets type represents a collection of planets as a key-value
map from planet identifiers to the planet structures.

type Planets = Map PlanetId Planet

The planets in this galaxy are too far away for spaceships to travel
between them within a reasonable amount of time using traditional
propulsion systems, but certain planets are connected by wormholes,
allowing spaceships to travel through them faster than light.

https://en.wikipedia.org/wiki/Galcon
https://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Lazy.html
https://hackage.haskell.org/package/containers-0.6.2.1/docs/Data-Map-Lazy.html

co202: coursework 1 3

data Wormhole = Wormhole Source Target Turns

newtype Source = Source PlanetId

newtype Target = Target PlanetId

newtype Turns = Turns Int

Crucially, a Wormhole connects two planets in a directed way. That
is, wormholes are one-way streets with a set value of type Source

for the source, and Target for the target. The value of type Turns

indicates how many turns it takes for a spaceship to travel through
the wormhole.

Similarly to Planets, Wormholes are also referred to by an identifier
which is just a wrapper around an Int:

newtype WormholeId = WormholeId Int

These are collected into a key-value map in much the same way:

type Wormholes = Map WormholeId Wormhole

As spaceships go through wormholes, the number of turns left
on their journey before they arrive is tracked. The Fleet data type
represents a fleet of ships by storing whose ships they are, how many
of them are there, which wormhole they’re in, and how many turns
left before they reach their target.

data Fleet = Fleet Player Ships WormholeId Turns

When a fleet of ships arrives at the target of the wormhole, they join
forces with the ships that are there if they belong to the same owner.
Otherwise, the fleet attacks the ships on the defending planet, can-
celling each other out one-to-one. If there are more ships in the fleet
than on the planet then the remaining ships from the fleet establish
themselves on the planet garrison, and the planet is owned by the
fleet owner.

The Fleets type represents a collection of fleets. Note that these
do not have identifiers, as they are not referred to anywhere.

type Fleets = [Fleet]

The state of the map at any given time is represented by the
GameState data type:

data GameState = GameState Planets Wormholes Fleets

Finally, at every turn, the server takes a list of orders and begins to
execute them.

data Order = Order WormholeId Ships

The exact rules of the game are not important for this assignment,
though they will become relevant in the next.

co202: coursework 1 4

4 Dynamic Programming

Dynamic programming is a technique for optimising the runtime
performance of a recursive algorithm that has overlapping subprob-
lems. The speedup comes from storing the subsolutions for later use
instead of recomputing them every time they are needed.

The strategy is developed in two stages:

1. Write an inefficient recursive algorithm that solves the problem.

2. Improve efficiency by storing intermediate shared results.

As a simple example, dynamic programming can be applied to speed
up a naive implementation of the Fibonacci function. While the input to fib is usually bound

by an Int, even for small inputs the
function will overflow in its output,
hence the return type is Integer, which
can represent arbitrarily large integers.

Each Fibonacci number for a given value n is given by fib n given
by the following recursive algorithm:

fib :: Int -> Integer

fib 0 = 0

fib 1 = 1

fib n = fib (n-2) + fib (n-1)

fib 10

fib 8 fib 9

fib 6 fib 7 fib 7 fib 8

Figure 2: Call tree of fib 10, showing
multiple repeated computations.

This code is remarkably inefficient, since there are repeated calls to
computations that recalculate the same value. Figure 4 shows that
fib 8 is called twice in the calculation of fib 10. In turn, fib 7

is called three times, fib 6 five times, etc. As an approximation,
assume that the two subcalls of fib have the same cost, giving the
recurrence relation:

Tfib(n) ≤ 1 + 2× Tfib(n− 1)

Solving this recurrence gives Tfib(n) ∈ O(2n). This is remarkably
expensive and due to the fact that there are large overlaps in the
solutions of subproblems, which keep getting recalculated.

This recalculation can be avoided by building up the intermediate
values up to the result. More concretely, the computation of fib n,
involves defining an array containing the values of fib for all num-
bers from 0 up to n.

The Array Int Integer type represents
an array indexed by Int containing
values of type Integer.

The function (!) provides constant-
time random access.

The function array takes a range
(u,v) of values as its bounds, and a list
of pairs where each pair (i,x) is used
to place x at index i in the table.

table :: Int -> Array Int Integer

table n = array (0,n) [(0, 0)

, (1, 1)

, (2, table ! 0 + table ! 1)

, (3, table ! 1 + table ! 2)

, ...]

This is, of course, not the best way to
calculate Fibonacci numbers (which
can be done in sublinear time), but it
illustrates how a recursive algorithm
can be made more efficient.

Notice that every element of table refers to solutions of previous
problems that eventually lead to a base case: there are no circular

co202: coursework 1 5

references so the self-referential definition is well-defined. Here is a
version of fib that builds the right table and returns the last element
of the array.

fib’ :: Int -> Integer

fib’ n = table ! n

where

table :: Array Int Integer

table = tabulate (0, n) mfib

mfib 0 = 0

mfib 1 = 1

mfib n = table ! (n-1) + table ! (n-2)

It is important that mfib is in the same
level of scope as table: if it were top-
level then a new table would be created
on each call!

The table given by tabulate (x,y) f contains the results of applying
f to all the values between x and y. It is implemented as an array
which gives constant time access to its elements. The constraint Ix i allows the values of

type i to be drawn from those given by
the range function, as well as enabling
values to be indexed over in an array.
This allows arrays to be indexed by
types other than Int. For instance, a
valid index is a tuple (Int, Int) for a
two-dimensional array indexed by pairs
of Ints.

tabulate :: Ix i => (i,i) -> (i -> a) -> Array i a

tabulate (u,v) f = array (u,v) [(i, f i) | i <- range (u, v)]

The cost of building this table is the sum of all the individual calls
of f. The key to efficiency is that the function f can itself refer to
the table that is being constructed. If the cost of f is constant, such
that Tf(i) ∈ O(1), and the table has n elements, then the cost of its
construction is Ttable(n) ∈ O(n).

In the code above, mfib is a local version of fib that finds values in
the table rather than by recursion. The function takes constant time
since (!) is a constant time operation. Thus, the time complexity of
evaluating fib’ n is given by:

Tfib’(n) = 1 + Ttable(n) + T!(n)

where Ttable(n) is the time it takes to construct the table, and T!(n) is
the time it take to look up a value in that table. Therefore, the overall
cost is Tfib’(n) ∈ O(n), which is much better than before.

The slogan for dynamic programming algorithms is to trade space
for speed: the table takes space in memory to construct, but results in
a much faster algorithm.

5 Planet Picking

The first task of this coursework is to plan which planets to conquer
first. To simplify things, assume that there are a number of planets
that are equally reachable from your forces.

As an example, here is a map with 5 planets, planet 0 being your
home planet, and planets 1..4 being the neutral planets that you

co202: coursework 1 6

can conquer, each in a single turn. Furthermore, the planets are not
reachable from one another.

example1 :: GameState

example1 = GameState planets wormholes fleets where

planets = M.fromList

[(PlanetId 0, Planet (Owned Player1) (Ships 300) (Growth 0))

, (PlanetId 1, Planet Neutral (Ships 200) (Growth 50))

, (PlanetId 2, Planet Neutral (Ships 150) (Growth 10))

, (PlanetId 3, Planet Neutral (Ships 30) (Growth 5))

, (PlanetId 4, Planet Neutral (Ships 100) (Growth 20))

]

wormholes = M.fromList

[(WormholeId 0, Wormhole homePlanet (Target 1) (Turns 1))

, (WormholeId 1, Wormhole homePlanet (Target 2) (Turns 1))

, (WormholeId 2, Wormhole homePlanet (Target 3) (Turns 1))

, (WormholeId 3, Wormhole homePlanet (Target 4) (Turns 1))

] where homePlanet = Source 0

fleets = []

The information in a GameState can be queried. For instance, the
targetPlanets function lists the planets that can be reached from a
given source, and the shipsOnPlanet function finds how many ships
are garrisoned on a planet.

targetPlanets :: GameState -> Source -> [(PlanetId, Ships, Growth)]

targetPlanets st s

= map (planetDetails . target) (M.elems (wormholesFrom s st))

where

planetDetails :: PlanetId -> (PlanetId, Ships, Growth)

planetDetails pId = (pId, ships, growth)

where Planet _ ships growth = lookupPlanet pId st

shipsOnPlanet :: GameState -> PlanetId -> Ships

shipsOnPlanet st pId = ships

where Planet _ ships _ = lookupPlanet pId st

Both of these functions use lookupPlanet to extract a planet from
the GameState:

lookupPlanet :: PlanetId -> GameState -> Planet

lookupPlanet pId (GameState ps _ _) = fromJust (M.lookup pId ps)

It is also possible to determine the wormholes that correspond to a
planet, whether that be wormholes to or from that planet:

wormholesFrom :: Source -> GameState -> Wormholes

wormholesFrom pId (GameState _ ws _)

= M.filter (\(Wormhole s _ _) -> s == pId) ws

co202: coursework 1 7

wormholesTo :: Target -> GameState -> Wormholes

wormholesTo pId (GameState _ ws _)

= M.filter (\(Wormhole _ t _) -> t == pId) ws

Here is an example of how ghci can be used to query some values:

ghci> targetPlanets example1 (Source (PlanetId 0))

[(1,200,50),(2,150,10),(3,30,5),(4,100,20)]

If the overall number of defenders among all these planets is over-
whelming, you will have to pick which planets to conquer first. Plan-
ets have a different intrinsic value, which is represented by their
growth rate. The question is which planets to conquer in the first
turn to maximise the growth rate. In the case of example1, the op-
timal strategy if your fleet has 300 ships is to conquer planet 1 and
planet 4, resulting in a growth rate of 70.

Planets have different intrinsic value, so you should aim to max-
imise the value of your conquest given your capacity to attack. This is
optimisation problem is an example of the classic knapsack problem.

5.1 Unbounded Knapsack

The unbounded knapsack problem concerns itself with packing a
knapsack with some given capacity c with elements of some weight
and value drawn from a list. There is no limit to the number of times
an element can be picked from the list. The goal is to maximise the
value of the items that can be placed in the list, without going over
the capacity.

Thus, the available items are represented as a list of triples, where
each item has a name, some weight, and some value. The name parameter is not used in this

first function, but it will become useful
later.[(name, weight, value)]

As a recursive algorithm, knapsack is easily stated: take an item
(name, weight, value), and consider what would happen if we put
it in the knapsack. The total value would be increased by the value

of the item, but the remaining capacity would be decreased by the
weight of the item. So, if the starting capacity is c, then picking this
item would result in a maximum value of the item’s value plus the
maximum value of the subproblem where the capacity is c-w (since
after putting this item in, we need to maximise the value by filling in
the remaining capacity). The optimal solution is achieved by trying
every item as the first one, then recursively optimising the remaining
capacity, ultimately finding the maximum one.

The knapsack function is highly poly-
morphic, as it works on any types of
inputs, as long as they can be compared
(as stated by the Ord constraint) and
support basic arithmetic (as stated by
the Num constraint). Here the abstrac-
tion helps make clear exactly which
properties of the types are relied upon.

This recursive description can be written as the following:

knapsack :: forall name weight value. (Ord weight, Num weight, Ord value, Num value) =>

co202: coursework 1 8

[(name, weight, value)] -> weight -> value

knapsack wvs c = maximum 0 [v + knapsack wvs (c - w) | (_,w,v) <- wvs , w <= c]

That is, from the input list wvs, find all elements whose weight is less
than the capacity, and try them by recursively solving the smaller
problem.

Finally, take the largest element of this list using maximum.

maximum :: Ord a => a -> [a] -> a

maximum x xs = foldr max x xs

The maximum value here is bounded below by 0.
This implementation of knapsack correctly produces the maximum

value, which can be tested in ghci:

ghci> knapsack [("a", 35, 10), ("b", 153, 200), ("c", 100, 20)] 800

1010

However, the efficiency of this algorithm is quite terrible when
the knapsack can be filled to a given capacity by picking different
combinations of elements, since this leads to repeated computations.
Try increasing the capacity to see how slow it gets.

The forall is used to put the type
variables name, weight, and value in
scope so that they can be referred to in
the where clause.

Notice the additional (Ix weight)
type class constraint in the function’s
signature. This indicates that the weight

will be used as an array index when
building the table for the subproblem
solutions.

Problem 1: Dynamic Knapsack

Use dynamic programming to improve the running time of
knapsack, by giving a definition of mknapsack in the code below.

knapsack’ :: forall name weight value .

(Ix weight, Num weight, Ord value, Num value) =>

[(name, weight, value)] -> weight -> value

knapsack’ wvs c = table ! c

where

table :: Array weight value

table = tabulate (0,c) mknapsack

mknapsack :: weight -> value

mknapsack c = undefined

Hint: compare the recursive version of fib with the dynamic
programming version to see how to translate one to the other.

While this correctly and efficiently calculates the maximum value
of the knapsack, it does not announce what the items that are picked
actually are (in other words, the name elements are ignored). To do
this, the return type Value needs to be modified to something that
holds both the value and the index of the item that was chosen. Then,
you will have to modify the algorithm so that the index does not get
in the way, and so that the indices are properly combined.

co202: coursework 1 9

Problem 2: Knapsack Elements

Implement knapsack’’ as a modified version of knapsack’ so that
it outputs the maximum value of the knapsack, as well as a list of
the element indices that are chosen to obtain that value.

knapsack’’

:: forall name weight value

. (Ix weight, Num weight, Ord value, Num value)

=> [(name, weight, value)] -> weight -> (value, [name])

knapsack’’ wvs c = table ! c

where

table :: Array weight (value, [name])

table = tabulate (0,c) mknapsack

mknapsack :: weight -> (value, [name])

mknapsack c = undefined

Hint: You may need to make use of maximumBy to be able to ig-
nore the indices that are being used. A fantastic site for finding
useful functions is https://hoogle.haskell.org/, where even
type signatures can be typed in.

If your solution is correct, you should see something like this:

ghci> knapsack’’ [("a", 35, 10), ("b", 153, 200), ("c", 100, 20)] 800

(1010,["b","b","b","b","b","a"])

5.2 Bounded Knapsack

The unbounded knapsack problem allows the items to be used mul-
tiple times. However, the planets can only be conquered once, so it
doesn’t make much sense to allow them to be picked multiple times.
The goal of this section is to implement the bounded knapsack problem
(sometimes called the 0-1 knapsack problem) to help decide which
planets should be conquered.

Problem 3: Bounded Knapsack

This is the type of bknapsack, which is similar to knapsack except
that the elements are not replaced when picked.

bknapsack

:: forall name weight value

. (Ord weight, Num weight, Ord value, Num value)

=> [(name, weight, value)] -> weight -> (value, [name])

bknapsack = undefined

https://hoogle.haskell.org/

co202: coursework 1 10

Hint: Perform case analysis on the list of items. After using an
item, remove it from the recursive call.
To implement this function, first write a recursive definition, where
the result of bknapsack wvs c is the maximum value that can be
packed into a capacity of c from the elements of wvs by only using
each element at most once.

The solution to bknapsack (hopefully) looks simpler, or at least
not much more difficult, than for knapsack. However, it turns out
to be trickier to apply dynamic programming to the bounded case
than the unbounded case. To understand why, consider the previous
applications of dynamic programming. Both in the case of fib and
knapsack, the solution was to inductively iterate through the space
of inputs until reaching the desired value. In case of fib, the Ints
were iterated, and in the case of knapsack, the weight values. The
reason this approach works for knapsack is because in the recursive
call, only the weight parameter changes, so the table can be built only
indexed by that parameter alone.

In the case of bknapsack, there are two varying parameters: the
weight as before, but also the input list, as the picked element gets
removed in every iteration.

A first approach might be to simply make the array indexed by not
only the weight parameter, but also the [(name, weight, value)]

list. However, indexing on this list of triples would be a very large
domain, which would make it difficult to create an efficient lookup
table.

Problem 4: Bounded Knapsack Revisited

Write another recursive solution, bknapsack’, to the bounded
knapsack problem. This time, do not change the list in the re-
cursive case, but instead try to introduce another parameter that
keeps track of progress.

bknapsack’ :: forall name weight value .

(Ord weight, Num weight, Ord value, Num value) =>

[(name, weight, value)] -> Int ->

weight -> (value, [name])

bknapsack’ = undefined

Hint: Take a careful look at the type signature, and notice the
extra Int parameter. Use this to keep track of which part of the list
has been processed.

co202: coursework 1 11

Problem 5: Dynamic Bounded Knapsack

Using dynamic programming implement bknapsack’’, which is
the efficient version of bknapsack’ that makes use of tables rather
than repeated recursion.

bknapsack’’ :: forall name weight value .

(Ord name, Ix weight, Ord weight, Num weight,

Ord value, Num value) =>

[(name, weight, value)] -> weight -> (value, [name])

bknapsack’’ = undefined

Hint: when populating the table, use the new Int parameter
instead of the input list as part of the index.
Hint: The Array type can be indexed by any type that has an
Ix instance. Notably, tuples of indexable types are also index-
able, which means for example it is possible to have an array of
type Array (Int, Int) Bool, which can be thought of as a two
dimensional array.

To put all the pieces together, the optimal conquering strategy can
finally be calculated from any source planet:

optimise :: GameState -> Source -> (Growth, [PlanetId])

optimise st s@(Source p)

= bknapsack’’ (targetPlanets st s) (shipsOnPlanet st p)

For example, the example1 map state should yield

ghci> optimise example1 (Source 0)

(70,[4,1])

6 Directed Graphs

Navigating through the network of wormholes will require a rep-
resentation of that network, and this is nicely achieved by using a
graph. A graph consists of vertices and edges. For simplicity, we will There are many kinds of graphs,

depending on whether there are cycles,
whether edges are directed, whether
there can be only up to one edge
between to vertices, and whether the
edges have weights.

focus on the definition of a weighted directed simple graph: since
it is weighted and directed, each edge has a specified source, target,
and weight. Weights will be assumed to simply be of type Integer.

type Weight = Integer

The e -> v part of the class declaration
is called a functional dependency, and it
describes a relation between edges and
vertices. Here it says that knowing the
type of an edge determines the type of
the vertex.

This is encapsulated by the following class, where e is the type of
edges, and v is the type of vertices:

class Eq v => Edge e v | e -> v where

source :: e -> v

co202: coursework 1 12

target :: e -> v

weight :: e -> Weight

This abstraction means that different types can be considered to be
edges, which will become useful later on.

As an example, a triple (String, String, Integer) can be
thought of as an edge between vertices that are Strings.

instance Edge (String, String, Integer) String where

source (s, _, _) = s

target (_, t, _) = t

weight (_, _, i) = i

Concretely, ("here","there",10) is an edge from the source "here"

to the target "there" with weight 10.
For Imperial Conquest, the Wormhole type can readily be made

an instance of Edge with vertices of type PlanetId.

instance Edge Wormhole PlanetId where

source (Wormhole (Source s) _ _) = s

target (Wormhole _ (Target t) _) = t

weight (Wormhole _ _ (Turns turns)) = toInteger turns

Here, the weight of the edge is the number of turns it takes to travel
through the wormhole.

Describing edges in this abstract sense using a type class has some
nice benefits. It makes it possible to talk about graphs and algorithms
on graphs in a way that is not tied to any specific representation.
The advantages of abstraction here are twofold: the implemented
algorithms are easier to understand because they do not refer to low-
level details, and they are also more reusable. Just like knapsack, the
graph algorithms here will also work on our galaxy, even though the
implementations do not mention anything about planets or ships.

This is convenient because when talking
about the wormholes in the galaxy, it
will be useful to know the identifier as
well as the value.

It is also possible to attach additional payload to edges when con-
venient. For instance, since a Wormhole is an edge, so is a pair of a
WormholeId and a Wormhole.

instance Edge (WormholeId, Wormhole) PlanetId where

source (_, w) = source w

target (_, w) = target w

weight (_, w) = weight w

An edge connects two points in a graph, and is a primitive build-
ing block of a graph. Edges compose together when the target of
one agrees with the source of the other, making it possible to fol-
low a path from a source vertex to a target vertex through a series
of connected edges. In this sense, a path between two vertices can be
thought of as a list of edges.

co202: coursework 1 13

Here is a concrete implementation of a Path

data Path e = Path Weight [e]

As an optimisation, it is convenient for a path to also keep track of
the sum of all the weights of its edges as an additional parameter.
This is redundant information since since the total weight could
always be recomputed from just the list alone, but it makes it easier
to inspect a useful value.

An edge can trivially be turned into a path:

pathFromEdge :: Edge e v => e -> Path e

pathFromEdge e = Path (weight e) [e]

This is a path with just one edge.
Since the Path type contains a list, it is a lot more efficient to

prepend a new element at the front (since (:) is O(1)) than it is to
append at the end (which will cost O(n) to traverse). A path in gen-
eral can grow on either end (an edge going out of the target, or an
edge going into the source), so there is a choice of which operation
should be supported more efficiently.

There are of course other data struc-
tures such as double-ended queues that
support both operations in amortized
constant time.

For the purposes of this coursework, a fixed source for paths will
be more useful, so a path will only be extended by adding edges out
of the target. To support this operation efficiently, the source will be
stored at the tail end of the list, and the target is at the head. This
means that a path can be extended by with an edge going out of the
current target of the path.

extend :: Edge e v => Path e -> e -> Path e

extend (Path _ []) _ = error "extend: Empty path"

extend (Path d (e:es)) e’

| target e == source e’ = Path (d + weight e’) (e’:e:es)

| otherwise = error "extend: Incompatible endpoints"

Given a list of edges es = [e0 , ..., en] where each ei has
source vertex vi, target vertex vi+1, and weight wi, they can be stitched
together into a path:

pathFromEdges :: Edge e v => [e] -> Path e

pathFromEdges (x : xs) = foldl extend (pathFromEdge x) xs

pathFromEdges [] = error "pathFromEdges: Empty list of edges"
Here the (String, String, Integer)

instance is used. Notice how the list is
reversed in order to expose the target of
the path at the head of the list.

ghci> pathFromEdges [("a", "b", 10), ("b", "c", 20)]

Path 30 [("b","c",20),("a","b",10)]

The Path type can actually be thought of as an edge, since it has
a source, a target, and a weight. The vertex type is the same as the
underlying edge’s vertex type.

co202: coursework 1 14

instance Edge e v => Edge (Path e) v where

source (Path _ es) = source (last es)

target (Path _ es) = target (head es)

weight (Path w _) = w

This instance is only possible if, just like edges, paths themselves can
be compared for equality.

ghci> weight (pathFromEdges [("a", "b", 10), ("b", "c", 20)])

30

There are many choices for describing
a graph interface. This interface focuses
on querying rather than constructing
graphs.

Building on this abstraction of edges and vertices, a graph can be
given by the following class interface:

Usually it is best for the more stable
parameters of a function to come first,
so graphs before vertices. However,
the “elem” functions usually have their
arguments in the order so that they can
be written as x ‘elem‘ xs, to mimic the
mathematical notation x ∈ X.

class Edge e v => Graph g e v | g -> e where

vertices :: g -> [v]

edges :: g -> [e]

edgesFrom :: g -> v -> [e]

edgesTo :: g -> v -> [e]

velem :: v -> g -> Bool

eelem :: e -> g -> Bool

Instances of this type class can be thought of as graphs: creating an
instance for a graph takes three type parameters: the first indicates
the representation of the graph, the second is for the representation
of an edge, and the third is the representation of a vertex.

A simplistic representation of a graph is simply as a list of edges.
This can certainly be achieved if the edges can be compared for
equality.

The nub function, from Data.List,
removes duplicate elements

instance (Eq e, Edge e v) => Graph [e] e v where

vertices es = nub (map source es ++ map target es)

edges es = es

edgesFrom es v = [e | e <- es, v == source e]

edgesTo es v = [e | e <- es, v == target e]

velem v es = v ‘elem‘ vertices es

eelem v es = v ‘elem‘ edges es

Thus, the following example is a legitimate graph:

example2 :: [(String, String, Integer)]

example2 = [("s","t",10), ("s","y",5), ("t","x",1), ("t","y",2), ("y","t",3),

("y","x", 9), ("x","z",4), ("z","x",6), ("y","z",2), ("z","s",7)]

s

t x

y z

10

5

1

23

9

46

2

7

Figure 3: Graph of example2, bold lines
indicate edges in the shortest path from
s to other vertices.

It is possible to extract the vertices from this example:

ghci> vertices example2

["s","t","y","x","z"]

co202: coursework 1 15

The GameState type is an example of a graph: it holds information
about planets, which are the vertices, and wormholes, which are the
edges. The class instance shows how to extract this information.

instance Graph GameState (WormholeId, Wormhole) PlanetId where

vertices (GameState ps _ _) = M.keys ps

edges (GameState _ ws _) = M.assocs ws

edgesTo st pId = M.toList (wormholesTo (Target pId) st)

edgesFrom st pId = M.toList (wormholesFrom (Source pId) st)

velem pId (GameState ps _ _) = M.member pId ps

eelem (wId, _) (GameState _ ws _) = M.member wId ws

This is not an efficient implementation, but it does allow for rapid
prototyping, and querying the structure directly.

ghci> edgesFrom example1 0

[(0,Wormhole 0 1 1),(1,Wormhole 0 2 1),(2,Wormhole 0 3 1),(3,Wormhole 0 4 1)]

There are several representations of graphs that are possible and
to this end, it is useful to work with a common interface for graphs,
thus allowing experimentation with different implementations.

7 Shortest Paths

Players start with bases at some given distance away from each other.
Knowing the distance to every planet helps to estimate how long it
will be before there can possibly be any conflict there.

Working out the shortest distance through the galaxy can be re-
duced to an instance of Dijkstra’s algorithm. The version explored
here finds a list of the shortest paths from a root vertex to each other
reachable vertex in the graph.

There are three main data structures at the heart of Dijkstra’s
algorithm: a graph, a priority queue, and a set. The graph is required
to pull out edges for consideration when constructing the shortest
path. The priority queue holds tentative shortest paths to vertices
neighbouring the targets of shortest paths that have already been
found. The set holds vertices that have yet to be explored.

Before working with Dijkstra’s algorithm, it will be useful to un-
derstand priority queues.

7.1 Priority queues

A priority queue is a structure that contains elements which have
a given priority. Elements are extracted from the priority queue in
ascending order.

The ordering imposed by a priority queue is given by a function
which compares two elements and returns an Ordering. The values

co202: coursework 1 16

of type Ordering are one of LT (less than), EQ (equal), or GT (greater
than). Here are some functions that turn a binary operation that
returns an ordering into a function that corresponds to the more
traditional (<=) and (==).

lt :: (a -> a -> Ordering) -> (a -> a -> Bool)

lt cmp x y = cmp x y == LT

gt :: (a -> a -> Ordering) -> (a -> a -> Bool)

gt cmp x y = cmp x y == GT

lte :: (a -> a -> Ordering) -> (a -> a -> Bool)

lte cmp x y = cmp x y /= GT

eq :: (a -> a -> Ordering) -> (a -> a -> Bool)

eq cmp x y = cmp x y == EQ

A useful intuition is that a priority queue is abstractly simply an
ordered list. Element order must be maintained when elements are
added or removed from this list. The PQueue interface allows for
different implementations of a priority queue: Notice that some operations like

toPQueue, fromPQueue and detach

can be implemented in terms of other
operations, so default implementations
are provided for these. In case there is a
more efficient implementation for a par-
ticular instance, then these defaults can
be overridden (as you will see shortly).

class PQueue pqueue where

toPQueue :: (a -> a -> Ordering) -> [a] -> pqueue a

toPQueue cmp xs = foldr insert (empty cmp) xs

fromPQueue :: pqueue a -> [a]

fromPQueue = unfoldr unqueue

where

unqueue q

| isEmpty q = Nothing

| otherwise = Just (detach q)

priority :: pqueue a -> (a -> a -> Ordering)

empty :: (a -> a -> Ordering) -> pqueue a

isEmpty :: pqueue a -> Bool

insert :: a -> pqueue a -> pqueue a

extract :: pqueue a -> a

discard :: pqueue a -> pqueue a

detach :: pqueue a -> (a, pqueue a)

detach q = (extract q, discard q)

This intuition can be firmed up by giving laws that govern a valid
priority queue instance: These laws appeal to operations on

lists, which can be found at https:
//hackage.haskell.org/package/

base-4.12.0.0/docs/Data-List.html.

https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html

co202: coursework 1 17

fromPQueue (toPQueue cmp xs) = sortBy cmp xs (1)

fromPQueue (empty cmp) = [] (2)

isEmpty xs = nil (fromPQueue xs) (3)

fromPQueue (insert x xs) =

insertBy (eq (priority xs)) (fromPQueue xs)
(4)

extract xs = head (sortBy (priority xs) (fromPQueue xs)) (5)

discard xs = tail (sortBy (priority xs) (fromPQueue xs)) (6)

detach xs = (extract xs, discard xs) (7)

Notice that toPQueue . fromPQueue is not necessarily the identity
function: there is space for different underlying representations of the
same sorted list.

Perhaps the most natural implementation of a priority queue is a
sorted list, together with the function that will determine the order-
ing of elements (i.e. the total ordering relation that the list is sorted
by):

data PList a = PList (a -> a -> Ordering) [a]

To witness that this is indeed a priority queue requires a PList in-
stance of PQueue:

instance PQueue PList where

toPQueue cmp xs = PList cmp (sortBy cmp xs)

fromPQueue (PList _ xs) = xs

empty cmp = PList cmp []

isEmpty (PList _ xs) = null xs

priority (PList cmp _) = cmp

insert x (PList cmp []) = PList cmp [x]

insert x ps@(PList cmp xs)

| x <= y = cons x ps

| otherwise = cons y (insert x ys)

where (<=) = lte cmp

(y, ys) = detach ps

cons x (PList cmp xs) = PList cmp (x:xs)

extract (PList cmp (x:xs)) = x

discard (PList cmp (x:xs)) = PList cmp xs

In the implementation of Dijkstra’s shortest path algorithm, the
priority queue holds paths, ordered by their total length. This order-
ing is implemented by the cmpPath function.

co202: coursework 1 18

cmpPath :: Path v -> Path v -> Ordering

cmpPath (Path d _) (Path d’ _) = compare d d’

7.2 Dijkstra’s Algorithm

The purpose of Dijkstra’s algorithm is to find shortest paths. Rather
than finding the shortest path from a source vertex to a particular
target, the algorithm presented below finds shortest paths from a
source vertex to all reachable vertices in the graph.

The shortestPaths function operates on a given graph g and
source vertex v to return a list of the shortest paths from v.

shortestPaths :: forall g e v. Graph g e v => g -> v -> [Path e]

shortestPaths g v = dijkstra g (vertices g \\ [v]) ps

where

ps :: PList (Path e)

ps = toPQueue cmpPath (map pathFromEdge (edgesFrom g v))

The main workhorse of shortestPaths is the dijkstra function,
which implements Dijkstra’s algorithm. The algorithm operates on a
graph (g here), and maintains a list of nodes yet to be visited. Here,
this list is initially all the vertices of g except for the starting vertex v.
Finally, the algorithm also maintains a list of shortest path candidates
as a priority queue of paths (ps), which here is initially the edges
starting at v.

Notice that the dijkstra function does not take in the initial ver-
tex as an argument. Instead, it operates on the priority queue of
candidate shortest paths and grows them in a minimal way. The
shortestPaths function takes care of calling dijkstra with all the
edges from the starting node.

Here’s how the algorithm works:

1. If the list of unvisited nodes or the priority queue of candidate
edges is empty, then the algorithm is finished and returns the
empty list.

2. Otherwise, the algorithm selects the minimum path p from the
priority queue ps (remember that this can simply be achieved by
using detach.). In the simple case, the target vertex t of the path p

has already been visited, so a shortest path has already been found
to that node. The algorithm therefore proceeds with the remaining
priority queue that does not include p.

3. If the target vertex t of the path p is in the list of unvisited vertices
in us, then the path p is added to the list of solutions: this is the
shortest path to t. The remaining solutions are then found by
recursively calling the algorithm with an updated set of unvisited

co202: coursework 1 19

nodes and an updated priority queue. The set of unvisited nodes
is updated to remove v. Since p is a shortest path, new candidate
shortest paths are those that extend p by the edges from v.

The algorithm thus iteratively builds a list of all shortest paths
starting from the source. The correctness of this algorithm (that it
indeed returns the shortest paths) can be proved by induction on
the length of the visited nodes. The second step above relies on the
invariant that once a node has been visited, we know the shortest
path to it. The third step maintains this invariant. The key idea is that
the shortest candidate path is always guaranteed to be shorter than
all the other paths, even the ones not yet included in the candidates.
This is because the list of candidates is grown by extending the exist-
ing candidates. Crucially, there are no negative edges, which means
that any new candidate must be longer than the current shortest
candidate. Once again, the dijkstra function

is highly polymorphic, and it works
against any graph and priority queue
implementation

Problem 6: Dijkstra’s algorithm

Finish the implementation of dijkstra by completing the defi-
nitions for us’ and ps’’. us’ is the new list of unvisited nodes
to consider in the recursive call, and ps’’ is the updated prior-
ity queue ps’ with he new candidates inserted into it. This case
corresponds to step 3 from the above description.

dijkstra :: forall g e v pqueue.

(Graph g e v, PQueue pqueue) =>

g -> [v] -> pqueue (Path e) -> [Path e]

dijkstra g [] ps = []

dijkstra g us ps

| isEmpty ps = []

| t ‘elem‘ us =

let us’ :: [v]

us’ = undefined

ps’’ :: pqueue (Path e)

ps’’ = undefined

in p : dijkstra g us’ ps’’

| otherwise = dijkstra g us ps’

where

(p, ps’) = detach ps

t = target p

Hint: You might find foldr useful for updating the shortest path
candidates.

The shortest path between any two planets in example1 can be
computed by simply calling shortestPaths, since GameState is a

co202: coursework 1 20

graph.

ghci> shortestPaths example1 0

[Path 1 [(0,Wormhole 0 1 1)]

, Path 1 [(1,Wormhole 0 2 1)]

, Path 1 [(2,Wormhole 0 3 1)]

, Path 1 [(3,Wormhole 0 4 1)]]

This is a rather uninformative example all of the planets are con-
nected to the source and not to each other.

A more useful try is with example2, and this also works with
shortestPaths because lists of edges are graphs:

ghci> shortestPaths example2 "s"

[Path 5 [("s","y",5)]

, Path 7 [("y","z",2),("s","y",5)]

, Path 8 [("y","t",3),("s","y",5)]

, Path 9 [("t","x",1),("y","t",3),("s","y",5)]]

Although the implementation here is correct (assuming your so-
lution to dijkstra is correct!), one problem with the code is that it
is very inefficient. This is largely due to the incorrect choice of data
structures: the graph representation, the priority queue of paths, and
the set of unvisited vertices all use basic structures that have subop-
timal complexities. For instance, while extracting from the priority
queue is a constant time operation, insertion takes linear time in the
length of the queue, because in order to maintain the invariant that
the elements are ordered, the insertion function walks through the
elements to find the correct location for the new element.

7.3 A Heap of Paths

The first optimisation will be to replace the PList data structure with
a more efficient one. There is a myriad of data structures to choose
from, and picking the right one can be challenging. It is always a
good idea to consider how the data structure is being used, and
which operations need to be efficient, as there are tradeoffs where
an operation might be more efficient at the expense of another one.
For our priority queue, we need efficient extraction of the minimum
element and efficient insertion, as these are the two operations used
in Dijkstra’s algorithm. To satisfy these requirements, we will use a
binary heap data structure. At its simplest, this is a binary tree that
maintains the minimum element at the root of the tree, supporting
constant-time extraction of the smallest element.

The specific flavour we will be building is a leftist heap, which
supports efficient merging.

The data structure for a heap is given as follows:

co202: coursework 1 21

data Heap a = Heap (a -> a -> Ordering) (Tree a)

data Tree a = Nil | Node Int (Tree a) a (Tree a)

The Heap type packages a comparison function with a binary tree.
The Tree datatype is a binary tree with values at the nodes, but in

addition, each node also contains an Int, called the rank of the tree.

rankTree :: Tree a -> Int

rankTree Nil = 0

rankTree (Node h l x r) = h

rankHeap :: Heap a -> Int

rankHeap (Heap _ t) = rankTree t

The rank of a tree is the distance from the root node to the nearest
leaf node. This can of course always be computed on the fly, but for
efficiency, the Node constructor caches this value. Furthermore, the
rank of the left subtree is always at least as high as that of the right
subtree (which is where the name leftist comes from). The following A smart constructor is a function that

acts as a drop-in replacement for a
constructor, while maintaining the
invariants of the data structure. Here,
using node instead of Node will make
sure that the rank invariant always
holds.

smart constructor ensures that when building a new root, the rank and
the above invariant are maintained:

node :: Tree a -> a -> Tree a -> Tree a

node l x r

| hl < hr = Node (hl + 1) r x l

| otherwise = Node (hr + 1) l x r

where

hl = rankTree l

hr = rankTree r

The heap operations will ensure that the smallest element is al-
ways at the root of the tree. In other words, for any Node h l x r, x
is smaller than l and r (and recursively this means that x is smaller
than every element in the tree). Only heaps that have been constructed

with the same comparison function
should be merged. It is not possible in
Haskell to check functions for equality,
so this invariant can not be checked, but
it is assumed throughout.

The first operation on heaps is mergeHeap which merges two heaps
together such that the resulting heap will contain the elements of
both heaps while maintaining the invariants. mergeHeap simply calls
mergeTreee with the comparison functions of the first heap (which
should be the same as that of the second heap).

mergeHeap :: Heap a -> Heap a -> Heap a

mergeHeap (Heap cmp l) (Heap _ r) = Heap cmp (mergeTree cmp l r)

Problem 7: Merging trees

Implement the mergeTree operation which merges two leftist trees.

mergeTree

co202: coursework 1 22

:: (a -> a -> Ordering) -> Tree a -> Tree a -> Tree a

mergeTree cmp l r = undefined

If either tree is empty, the result should be the other tree. When
merging two nodes, first find out which tree should be merged
into which (such that the root is always the smallest element in the
tree), then recursively merge one tree into the right subtree of the
other, potentially swapping at the end if the resulting right tree is
taller than the left. Merging into the right (shorter) subtree ensures
that the tree never gets too unbalanced. This in turn means that
we will always have a logarithmic upper bound on the depth at
each merge. Hint: use the node smart constructor to maintain the
rank invariant.

co202: coursework 1 23

Problem 8: Heap Operations

Provide the instance of PQueue that shows how a heap can be used
as a priority queue, by filling out the following definitions:

instance PQueue Heap where

priority :: Heap a -> (a -> a -> Ordering)

priority = undefined

empty :: (a -> a -> Ordering) -> Heap a

empty p = undefined

isEmpty :: Heap a -> Bool

isEmpty = undefined

insert :: a -> Heap a -> Heap a

insert = undefined

extract :: Heap a -> a

extract = undefined

discard :: Heap a -> Heap a

discard = undefined

Hint: insertion can be thought of as merging with a singleton
tree.

The definition of shortestPaths’ below uses a Heap instead of a
PList for the underlying priority queue representation.

shortestPaths’ :: forall g e v . Graph g e v => g -> v -> [Path e]

shortestPaths’ g v = dijkstra g (vertices g \\ [v]) ps

where

ps :: Heap (Path e)

ps = foldr insert (empty cmpPath) (map pathFromEdge (edgesFrom g v))

This is exactly the same code as for shortestPaths, except that the
type annotation for ps specifies that it should use a Heap.

7.4 Adjacency List Graph

The graph representation used so far has been the simple GameState

instance. The problem here is that it is not very efficient for the
dijkstra algorithm. There, the edgesFrom function is used to find all
the edges from a vertex. This operation happens each time a short-
est path has been found. In the instance of Graph for GameState, the
implementation filters through the list of all the wormholes.

A different representation of a graph is known as the adjacency list.
An adjacency list is a list of pairs containing each vertex paired with

co202: coursework 1 24

all edges from that vertex. The type can be given by AdjList:

newtype AdjList e v = AdjList [(v, [e])]

In other words, each pair (v, es) in the adjacency list is a vertex v,
and each edge e in the edges es is such that source e = v.

Problem 9: Adjacency List Graphs

Implement an adjacency list representation that supports effi-
cient lookup of the edges from a planet by filling in the following
interface.

instance (Eq e, Edge e v) => Graph (AdjList e v) e v where

vertices (AdjList ves) = undefined

edges (AdjList ves) = undefined

edgesFrom (AdjList ves) s = undefined

edgesTo (AdjList ves) t = undefined

velem v (AdjList ves) = undefined

eelem e (AdjList ves) = undefined

Hint: You may use the standard list operations given in
Data.List. You may alternatively find list comprehensions use-
ful.

7.5 Conflict Zones

Having established an algorithm for finding the shortest paths from
a root vertex, it is possible to calculate the planets which each player
can reach first. This can be achieved by running the shortest path
algorithm from each player home base. As a final task, you should
write an algorithm that calculates this for a given GameState.

Problem 10: Conflict Zones

Provide the definition of conflictZones, where
conflictZones st p q takes in the game state st, and two planet
IDs p and q, and returns a triple (ps, pqs, qs) where ps are
the identities of planets that can be reached by p first, qs are the
identities of planets that can be reached by q first, and pqs are the
identities of planets that can be reached by both at the same time.

conflictZones :: GameState -> PlanetId -> PlanetId

-> ([PlanetId], [PlanetId], [PlanetId])

conflictZones st p q = undefined

Note that this should only be a function of the topology of the
game: it does not need to take into account the number of ships
garrisoned on planets, whether conquering is needed, the posi-
tions of fleets that are in flight or any other details.

	Introduction
	Submission
	Background
	Dynamic Programming
	Planet Picking
	Directed Graphs
	Shortest Paths

